
GPU-BASED ORTHORECTIFICATION OF DIGITAL AIRBORNE CAMERA IMAGES
IN REAL TIME

U. Thomas *, F. Kurz , D. Rosenbaum, R. Mueller , P. Reinartz

DLR (German Aerospace Center), Remote Sensing Technology Institute, 82234 Wessling, Germany

Ulrike.Thomas@dlr.de

Commission VI, WG I/4

KEY WORDS: Direct georeferencing, orthorectification, real time image processing, distributed system architecture, GPU-

computation

ABSTRACT:

The usage of airborne camera systems for near real time applications will increase in the near future. This paper purposes a new
hardware/software architecture to establish real time computation of images obtained from the DLR wide area airborne 3K-camera
system. The main applications of our system are e.g. to monitor automotive traffic, to determine the workload of public road
networks during mass events, or to obtain a survey of damages in disaster areas in real time. Therefore, many different image
processing tasks have to be executed in real time. Orthorectification of images is necessary prior to all other processing tasks, e.g.
before mapping data from street data bases into images or before tracking of vehicles. Nowadays, the calculation becomes possible
due to fast graphic processing units (GPU) and with the support of a distributed real time system. In order to achieve real time image
processing, we suggest a GPU-based algorithm for image orthorectification. The GPS/IMU-system provides the position and
orientation of the aircraft with 128Hz quite accurately. Assuming synchronized measurements with the camera system and given
camera calibration, direct orthorectification is implemented using OpenGL. Therewith, we are able to process high resolution images
consisting of 16 MPixels with a frame rate of 3 Hz. This paper describes the implementation of the real time algorithm and gives first
results.

* Corresponding author.

1. INTRODUCTION

Real time processing of imagery airborne data will be very
important in the near future. For automatic traffic monitoring,
for supporting rescue and security forces, and also for obtaining
surveys in disaster scenarios or mass events, an airborne real
time image processing system is required. Recently, the 3K-
Camera system was developed at DLR (Kurz et al. 2007a). The
system consists of three off-the-shelf 16 MPixel cameras which
are mounted on an airborne platform. Two cameras are directed
in side view and one camera is directed in nadir. In the near
future, an on-board system consisting of a computer network
shall perform image processing in near real time. Important data
like traffic payload, mosaiked survey images or changes
detected due to disasters should be sent to a ground station in
near real time, see figure 1. Various tasks need to be performed
on-board, because original high resolution images can not be
sent to the ground. This is caused by the data rate which is too
high for direct downloading via S-Band microwave. Thus,
many processes need to be executed at the on-board hardware.
Therefore, we currently develop a distributed image processing
system. To obtain high flexibility and good transparency, we
suggest the usage of a middleware to handle process-to-process
communication across a PC network. Nowadays several
middleware platforms are available, e.g. CORBA, TAO. But all
of them leak for the possibility to handle large image data in
real time. To achieve image processing in real time, strong
demands are made to reduce communication as much as
possible. In the first part of the paper this novel architecture is
described, where many processes need to be performed on the
on-board system. Because most of the processes will take

orthorectified images as input, strong demands are made on the
performance of the orthorectification algorithm. For this
purpose, we suggest to exploit common graphics hardware.
Hence, the fourth section of this paper explains a GPU-based
orthorectification algorithm. With this algorithm, the
orthorectification of 3K-camera images becomes possible in
real time. The algorithm is completely implemented in OpenGL
(Woo et.al. 1999). First results and computation time
measurements emphasize our suggestion to exploit GPUs

Figure 1: One application scenario for a wide area high

resolution airborne camera system.

 589

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

2. RELATED WORK

Many distributed real time systems have been developed in the
last decade. Most of the systems aim hard real time execution
where the amount of data to be forwarded between different
processes is not very high, (Diethers et al. 2003, Schantz et al.
2003). They are mostly known in the robotics or automation
community. In our application, high resolution images have to
be processed with a lower frame rate of 3Hz. The demanding
real time image processing system has to cope with data rate of
3 times 16x3 MByte per second (144 MByte/s – without
compression). Therefore, we introduce a novel
software/hardware concept, which is supposed to be able to
handle such amount of data. One important image processing
task is orthorectification of images. Up to date, analytical
implementations have been applied (Mueller et al. 2007). These
algorithms burden from the ray casting algorithm, which has to
be executed at least for each pixel. Ray intersection is
performed by modern graphics hardware many times faster.
Furthermore, the analytical computation of surface normal
vectors is a time consuming task. One advantage of the
analytical solution is the high accuracy, which is useful if
distances between sensor and earth surface are high. Here, the
GPU-based computation leaks from the logarithmic resolution
of depth buffer. Another analytical algorithm for geo-
referencing using pattern matching is shown in (Liu 2007). In
(Wright et. al 2005) a real time image processing system is
developed and also an analytical geo-referencing system is
implemented for thermal images. Recently GPU-based
computation became very popular for stereo reconstruction.

3. SYSTEM ARCHITECTURE

A brief introduction in our real time image processing system is
given, which is currently under development. The DLR 3K-
camera system is depicted in figure 2. It is connected via
firewire to PC hardware.

Figure 2: DLR 3K-camera system consisting of three Canon
EOS 1Ds Mark II, integrated in a ZEISS aerial camera mount.

The distributed real time system architecture is shown in figure
2. On each computer a middleware is running handling inter-
process communication over the network. The middleware also
supports the integration of different processes, e.g. if they
access the same image date. For this synchronisation the usage
of semaphores is comfortable. Thus, the middleware provides
the following functionality:

• A name service which takes care of all processes and
provides transparency within the network.

• Asynchronous data transmission via message passing
(for small data size).

• Synchronised data transmission via shared memory
and semaphores (for large data size, e.g. for images).

• Consumer-Producer concept.
• Transparency throughout different computers.

With this concept a layered architecture can be built. Each
process consumes data from an upper higher prioritised process
and produces data for lower level tasks. For example the ortho-
rectification process produces images for the street detection
algorithm and itself consumes image data obtained from the
sensor directly. This enables a more sophisticated
implementation of systems running various processes in real
time. One process needs only to know what kind of data it is
interested in. Thus, it initialises its messages to be sent to other
processes. Also for shared memory usage (e.g. for image data),
the process registers its data at the middleware. The middleware
establishes correct and monitored data access. Thus, each
implemented process establishes communication only with the
middleware. The exchange of data through various processes is
organised by the middleware. As seen in figure 3, in our
system five on-board computers are involved. The first three
machines acquire images and process elementary tasks:

• Orthorectification of images.
• Mapping data from a street data base into the

orthorectified image.
• Segmentation of streets.

Another computer is available for traffic monitoring, e.g. car
detection and car tracking (Kurz et al. 2007b). On this machine
various tasks are running. The upper layered task consumes
segmented streets and produces traffic data e.g. payload of road
network, traffic jam, velocity of vehicles. The machine, which
is linked to the microwave system, obtains the data and sends it
down via S-Band microwave, which is able to bridge distances
over 200 km. The communication to ground computer networks
is done via UDP send. Therewith, real time and near real time
applications of an airborne wide-area high resolution camera
system becomes possible.

Figure 3: Architecture of our distributed real time on-board

system.

 590

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

4. ORTHORECTIFICATION

Orthorectification of images has to be computed on the on-
board hardware. There, GPS/IMU data are available in real time
with 128 Hz. The flight route is planed prior to the flight. In
order to rectify images DSMs are necessary. They have to be
loaded from a data base prior to flight. Figure 4 illustrates the
image acquisition geometry of the DLR 3K-camera system. The
tilt angle of the sideward looking camera is approx 35°. Based
on the usage of 50 mm Canon lenses, the dependency between
airplane flight height, ground coverage, and pixel size is shown,
e.g. the pixel size at a flight height of 1000 m above ground is
15 cm and the camera array covers up 2.8 km in width.

Figure 4: Illustration of the image acquisition geometry. The
tilt angle of the sideward looking cameras is approx. 35°.

From this geometry the amount of triangles necessary to cover
the ground surface is derived. Table 1 lists the number of
triangles necessary for one triple image of the 3K-camera
system. For this estimation the RPY-angles of the airplane are
assumed to be zero. Of course, the number of triangles may
increase according to roll, pitch, and jaw angles as well as the
angle between the air plane and the earth surface. Thus, DSMs
are loaded on demand into PC storage. For holding the
appropriate DSM available, a Kalman-Filter is applied
estimating the high probable area and triggering the DSM
loading process. Then, the DSM covering this area is triangled
as fast as possible and loaded into the GPU. For up-to-date
graphics hardware handling such amount of triangles in real
time is possible. Some computation times for triangulation are
shown in section 5. The triangulation of surfaces will be
necessary prior to flight, if DSMs of higher resolution e.g. 2 m.
are applied. For halving the amount of data a Delaunay
algorithm can be used, but this algorithm is too slow for real
time computation. In this case, the mesh should be generated
prior to flight and stored in a binary file.

Flight height Number of triangles
DSM Resolution

[25m]
DSM Resolution

[2m]

side look nadir Side look nadir
1000 m 1710 1064 274 560 172 800
2000 m 6916 3420 1 099 200 691 200
3000 m 7809 9804 2 473 920 1 555 200

Table 1. Number of triangles necessary according to one triple

image of the DLR 3K-camera system (side look and nadir).
Assuming a boresight angle of 35°.

Fig. 5 illustrates the complete virtual scene necessary for GPU-
based orthorectification. All transformations and coordinate
systems are shown with following interpretation and given in
4x4 homogenous coordinates:

• is the transformation from the UTM-system
into the virtual reference system.

UTM
RefT

• is the transformation from UTM in GPS/IMU
system measuring the current flight position and
orientation in RPY coordinates.

UTM
IMUT

• , , are the transformations into

the camera system respectively. These
transformations cover the boresight angles and
transforms into the principle point of the camera
system.

IMU
nadirT IMU

rightdirT IMU
leftdirT

8.5 km

2.8 km

0.43 m

0.14 m

coverage pixel size

Coverage

Flight
@ 3000 m

@ 1000 m

(1:60.000)

(1:20.000)

• defines the transformation from the reference
system into the virtual camera system looking in
negative z-axis. Applying orthogonal projection
results the desired orthorectified image.

Ref
OrthoT

UTM
RefT

x

z

z
x

y

xy
z

sensor plane

DSM

UTM
IMUT

IMU
ir)camera(nadT

virtual
orthocamera

reference
system

UTM
system

Figure 5: Arrangement in 3d. All transformations are depicted.

The RPY angles are obtained by the GPS/IMU.

Some other parameters are also necessary. These are the pixel
size s = 7.21 10-6 m of camera and the number of cols and rows.
Also, the focal length is given with n = 0.0511 m. Up to now,
we remove the radial distortion of images from the original
image analytically, but we will accelerate the computation by
adding an appropriate 3d-mesh to the triangled DSM. Also the
distance from principle point to projection centre is necessary.
These parameters as well as boresight angles are obtained from
calibration. This is done on-the-fly without ground control
points based on automatically matched 3-ray tie points in
combination with GPS/IMU data (Kurz et al. 2007a).

4.1 Real Time Loop

As shown before, meshing DSMs is possible in real time for
DSMs with resolution of up to 2 m. In the next step, the image
is tiled due to graphics texture buffer size. This varies from
2048 pixels to 4096 pixels according to the available GPU.
Each tile is loaded and scaled with respect to the virtual image
size (wx,wy) by applying the scaling matrix S. Then, it is

 591

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

transformed into the virtual sensor plane. Following
transformations are used for each tile:

nadir
esensorplan

IMU
nadir

UTM
IMU

f
UTM TTTTS ⋅⋅⋅⋅ Re , (1)

With (x,y,z) obtained from GPS and (rpy) obtained from the IMU this
yields:

)()()(
)()2/(),,(

yRotpRotrRot
RotRotzyxTransT

zyx

xz
UTM

IMU

−⋅−⋅−⋅
−⋅⋅= ππ (2)

The last transformation is only a translation into the projection
center according to the length (n = 0.0511 m). A perspective
projection matrix P is applied. It maps a 2d-point to a ray,
which is intersected with the meshed surface by graphics
hardware.

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+−

−
+

−

−
+

−

=

0100

2)(00

020

002

:

nf
fn

nf
nf

bt
bt

lt
n

lr
lr

lr
n

P

with n = focal length equals to the near clipping plane
 f = far clipping plane
 r, l = right/left border of the tile to be projected
 t, b = upper and lower border of the tile

The parameters are calculated according to selected tiles of the
image. Figure 6 illustrates the relation. Thus, selecting the tile
shown of the image to be projected results in appropriate values
of l, r, b, t. For example, the upper left tile is projected, then l is
set to the pixel size multiplied by half number of columns and r
is set to zero. The other values are obtained similarly. The
computation of the far clipping plane is much difficult. It
depends on the current RPY angles, the boresight angle and the
DSMs normals. Thus, the rotated bounding box of the
underlying DSM is projected onto the z-axis of the sensor
coordinate system. Its maximal length is applied as distance to
the far clipping plane. Thus, the z-buffer size is estimated very
fast. Now, the tile can be projected by OpenGL. Computation
of texture coordinates is done automatically by fast graphics
hardware. At next they are mapped onto the DSM.

l

near
clipping

plane

r

far
clipping
plane

projection
center

image

tile

Figure 6: Projection of tiles and the corresponding OpenGL
parameters, which are computed during the real time loop.

The orthorectified image can be obtained by viewing the scene

from the orthocamera, which is placed according to . The
entire scene is scanned by driving the camera in the (x,y) plane

and reading the colour buffer of the result back to the CPU. To
determine the number of rendering calls required during the real
time loop for one image, three parameters are required: The
desired resolution in pixels, the size of the resulting image, and
the maximal window size available by graphics hardware
available. In order to estimate the size of the resulting image
prior to execution, an image with only one and the same colour
value in each pixel is generated and projected with lower
resolution onto the DSM. Then the colour buffer is read back
and the resulting bounding box is obtained (it is an oriented
bounding box, according to the orthocamera system). For
calculation of necessary rendering steps, the maximised
possible window size is applied. The scanning window is an
axis aligned window. From that the minimal number of required
image shots according to window size pixel ground resolution is
computed. Figure 7 shows the coherence. For each window,
corresponding tiles of the original image are selected and
projected into the ortho-image.

Ref
OrthoT

window
size x

window
size y

axis aligned
bounding
box

bounding box
of orthoimage

Figure 7: Scanning the high resolution image, here six
rendering steps are required in the inner real time loop.

.

triangulations of surfaces

estimation of bounding box

generation of texture
coordinates for
appropriate tiles

reading colour
buffer back to CPU

GPS/IMU
signal

camera
image

projection of tiles onto DSM

outer loop
with 3 fps

inner loop
(rendering)

Figure 8: Processing steps to be computed within the real time

loop. Each projected image is assembled to the final ortho-
image.

Assembling the orthoimages is done by collecting projected
tiles of parts of the image in each rendering step as illustrated in

 592

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

figure 7. Images for the white tiles are obtained in each
rendering step. They result in the desired orthoimage. Figure 8
depicts the two real time loops; in each computation step the
inner loop corresponds to the rendering loop and the outer loop
is the real time loop itself for obtaining an orthorectified image
for the DLR 3K-camera system. Except from meshing the
complete implementation is done in OpenGL.

4.2 Optimizations

Some optimizations concern the usage of OpenGL. Here,
Display-Lists could be used, because the DSMs are not
modified during flight. Another optimization would be the
usage of some OpenGL extensions allowing textures of varying
sizes. A third optimization of the orthorectification improves
the distortion algorithm. Currently, we use an analytical
solution. Instead of that the calibration program could generate
a 3d-mesh, which is only added to the meshed DSM. Hence, no
more computation time is required for radial distortion of
images.

5. RESULTS

In the usual case, we will compute the triangle meshes of DSMs
during the flight. For execution in real time computation times
should not be too long. Thus, we have measured our algorithm
for 3d-mesh triangulation. Figure 9 depicts execution times
according to flight height and DSM resolution. We needed 8 ms
for loading DSM with a resolution of 25 m and triangulating it
into 6664 triangles. The triangulation was performed very fast
within 0.0014 ms. Thus, most of the execution time is caused by
loading. The amount of triangles in this example corresponds to
a flight height of 2000 m in nadir. Thus, computation times for
images of side looking cameras will be about 30 % higher.

Time for loading and meshing DSMs

0

100

200

300

400

500 1000 2000 3000

Flight Height in [m]

C
om

pu
ta

tio
n

tim
e

in

[m
s]

15 m DSM 2 m DSM

Figure 9: Computation times for loading and triangle DSMs on-

the-fly in according to flight height for our DLR 3K-camera
system.

Due to the high image resolution we decided to apply the 25 m
DSM in order to have enough computation time available for
image loading and copying data between GPU and CPU buffer.

Another important execution time is the rendering step for a
single tile, because this has to be repeated often during the real
time loop. Table 2 depicts the relation between number of tiles,
available texture buffer size and necessary rendering steps.

The computation times for one rendering step according to
texture buffer size 512x512, 1024x124 and 2048x2048 are 17
ms, 51 ms and 95 ms. The computation time was determined on

a no-named Mobile on Board GPU. For reducing our execution
time we will apply fast GPUs in the near future. Despite this, it
is obvious that the performance of the graphics hardware
suffices for orthorectification of one single image of the 3K-
camera system. Thus, a frame rate of 3fps for the orthoimage
process can be achieved.

Flight height Number of rendering steps
buffer size of
(512 x 512)

buffer size of
 (2048x 2048)

off-dir nadir off-nadir nadir
1000 m app. 68 app.60 app.9 app.6
2000 m app. 80 app.70 app.12 app.8
3000 m app. 110 app.80 app.14 app.10

Table 2: Relation between texture buffer size and number of

iterations in the inner-loop. Assuming window buffer size and
texture buffer size has the same value, also assuming a side

looking angle of 35°.

For obtaining first results of our new algorithm we used images
and GPS/IMUS data from a flight in southern Germany in 2007.
In figure 10 the image can be seen where the radial distortion is
removed. The orthorectified image tile obtained by our real
time algorithm can be seen in figure 11. In comparison the
orthoimage computed by (Mueller et. al. 2004) is shown in
figure 11. The tile of the image is obtained within 97 ms on a
mobile no-named on board GPU.

Figure 10: Original image where distortion is already removed.

Figure 11: Result of the orthorectification of one tile.

 593

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008

Figure 12: Orthoimage computed with the same original image

and with the equal DSM. The entire image is projected
according to (Mueller et. al. 2004).

6. CONCLUSION AND OUTLOOK

In the paper, we have suggested a new architecture for real time
image processing in remote sensing. The architecture consists
of the DLR 3K-camera system and five on board PCs. For real
time applications in remote sensing e.g. traffic monitoring
orthorectification of images with a rate of 3fps is required. Up-
to-date analytical algorithm suffer from the high amount of data
(16Mpixel) to be projected, hence a real time algorithm has
been implemented which exploits graphics hardware. With this
implementation orthorectifcation of images in real time has
become possible. The computation times for the algorithm may
change according to data set. We have evaluated our algorithm
on one data set so far. In the future, we will evaluate the quality
of projected images using ground control points. The accuracy
of orthoprojected images has to be investigated as well. The
radial distortion of images is up-to-now computed analytically.
It will bee accelerated by using an appropriate 3d mesh.
Altogether, we can orthorectify images in real time, which is an
important first step towards real time monitoring of e.g. traffic,
disaster, and mass events.

REFERENCES

Diethers, K.; Finkemeyer, B.; Kohn, N. (Diethers 2003):
Middleware zur Realisierung einer offenen Steuerungshardware

für hochdynamische Prozesse. In: it-Information Technology,
(1), 2004 pp. 39-47.

Kurz, F., Müller, R., Stephani, M., Reinartz, P., Schroeder, M.
(Kurz 2007 a): Calibration of a wide-angle digital camera
system for near real time scenarios. In: Heipke, C.; Jacobsen,
K.; Gerke, M. [Eds.]: ISPRS Hannover Workshop 2007, High
Resolution Earth Imaging for Geospatial Information,
Hannover, 2007-05-29 - 2007-06-01, ISSN 1682-1777

Kurz, F., Charmette, B., Suri, S., Rosenbaum, D., Spangler, M.,
Leonhardt, A., Bachleitner, M., Stätter, R., Reinartz, P. (Kurz
2007 b): Automatic traffic monitoring with an airborne wide-
angle +digital camera system for estimation of travel times. In:
Stilla, U., Mayer, H., Rottensteiner, F., Heipke, C., Hinz, S.
[Eds.]: The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Vol. 36
(3/W49B), pp 83 -86

Mueller, Rupert; Lehner, M.; Mueller, Rainer; Reinartz, P.;
Schroeder, M.; Vollmer, B. (Mueller 2004): A program for
direct georeferencing of airborne and spaceborne line scanner
images. In: ISPRS 2004 Conference of Photogrammetry and
Remote Sensing, Commission I, WG 1/5,2004

Liu, C.-H. (Liu 2004): Fast georeferncing images through
generalized photogrammetric algorithms. In: ISPRS 2004
Conference of Photogrammetry and Remote Sensing, Commission
I, WG 1/6, 2004.

Schantz, R. E.; Loyall, J. P.; Schmidt, D. C.; Rodrigues, C.;
Krishnamurthy, Y.; Pyarali, I. (Schantz 2003): Flexible and
Adaptive QoS Control for Distributed Real-time and Embedded
Middleware. In: Proceedings of Middleware 2003, 4th
IFIP/ACM/USENIX International Conference on Distributed
Systems Platforms, June 16-20, Rio de Janeiro, Brazil, 2003.

Woo, M.; Neider, J; Davis, T.; Shreiner, D. (Woo 1999).
OpenGL Programming Guide.
Addision Wesley, Boston, 1999.

Wright D.B.; T. Yotsumata a, ; N. El-Sheimy
Liu, C.-H: Real Tim Identification and Location of forest fire
Hotspots from geo-referenced thermal images. ISPRS 2004
Conference of Photogrammetry and Remote Sensing, Commission
I, WG 1/6, 2004.

 594

