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ABSTRACT 
 
The challenge of navigating an autonomous vehicle over large distances was illustrated in 2005 at the DARPA Grand Challenge 
when 4 out of 23 Teams successfully completed a 132 mile course within a 10 hour time limit.  What the Grand Challenge revealed 
is that one of the most critical components of a successful autonomous vehicle was the reliability of accurate pose (positioning and 
orientation estimation).  Data from the Applanix POS LV provided critical vehicle dynamics, navigation and planning data.  Pre-
planning information is as important as real time navigation for achieving peak performance in autonomous driving as demonstrated 
by the Carnegie Mellon Red Team and their approach.  With the third iteration of the DARPA Grand Challenge, autonomous 
vehicles were required to navigate an urban course which contained dynamic obstacles a host of other impediments, providing the 
most realistic operational environment to date for autonomous vehicles.    This paper will outline the uses of positioning and 
orientation data for autonomous vehicle operations at the 2005 and 2007 events and how the Applanix POS LV system was an 
integral part of the Tartan Racing and Stanford University top finishing results at the DARPA Urban Grand Challenge. 
 
 

1. INTRODUCTION 

This paper addresses the problem of how to achieve reliable and 
repeatable positioning data and maximizing the performance of 
autonomous vehicles.  Robust positioning (which is the ability 
of a positioning system to maintain accurate position and 
orientation information even during GPS outages), is a 
necessary component of successfully navigating the vehicle.  
However, accurate orientation of the vehicle to derive very 
precise measures of vehicle dynamics for both pre-planning 
functions and real time navigation are absolutely essential to 
provide onboard sensors with relevant data to steer autonomous 
vehicles on their intended track, and deal with unanticipated 
conditions upon routes. 
 
 

2. POS LV DESCRIPTION 

The POS LV system is a tightly coupled inertial/GPS system 
which is shown in Figure 1.  Tightly-coupled implementation 
optimally blends the inertial data with raw GPS observables 
from individual satellites (ranges and range rates). In this case if 
the number of visible satellites drops below four, the inertial 
navigator is still aided by the GPS. The result is improved 
navigational accuracy when compared to free-inertial operation.  
An additional advantage of tightly-coupled integration is the 
improved re-acquisition time to recover full RTK position 
accuracy after satellite signal loss (see [1]). The inherent 
benefits of tightly-coupled data blending become readily 
apparent in the accuracy and integrity of the resulting 
navigation solution.  By contrast, loosely-coupled 
implementation blends the inertial navigation data with the 
position and velocity output from the GPS. If the number of 
visible satellites is sufficient for the GPS to compute its position 
and velocity, i.e. four or more satellites, then GPS position and 
velocity are blended with the inertial data. Otherwise, if the 
GPS data is not available, the system will operate without any 
GPS aiding.  The inertial navigator computes position, velocity 
and orientation of the IMU.  The Kalman filter estimates the 
errors in the inertial navigator along with IMU, distance  

 
 

Figure 1: POS LV Tightly Coupled System Architecture 
 
measurements instrument (DMI) and GPS receivers.   System 
components are shown in Figure 2.  The only addition to this 
system setup for the Carnegie Mellon Red Team at the 2005 
DARPA Grand Challenge was a Trimble Ag 252 receiver which 
provided OmniSTAR VBS corrections for position information.  
Typical position accuracies for open sky conditions are in the 
order of 0.5m RMS.  For the DARPA Urban Grand Challenge 
Ag 332 units were utilized and Teams had a choice to complete 
the course with OmniSTAR XP or HP corrections in order to 
achieve, in open sky conditions, 10 to 20 centimeter accuracy. 

 
Figure 2: POS LV System Components 

 
The GPS Azimuth Measurement Subsystem (GAMS) integrates 
the IMU with a 2-antenna heading measurement system. As 
long as there is GPS coverage GAMS continuously calibrates 
the IMU and azimuth does not drift. A single-antenna 
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configuration, in comparison, requires dynamic heading 
alignment and delivers heading measurements that suffer from 
drift and the rate of drift is heavily dependent on vehicle 
dynamics.  GAMS uses a carrier phase differential GPS 
algorithm to measure the relative position vector between the 
two antennas. These carrier phase measurements from five or 
more satellites are used to estimate, and eventually, to identify a 
set of integer phase ambiguities for each satellite being tracked 
by both receivers. For the ambiguity resolution algorithm to 
work, both receivers must track at least five common satellites. 
Once tracking has been obtained, GAMS will continue to 
operate with as few as four satellites. The GAMS heading 
system will not provide measurements when fewer than 4 GPS 
satellites are available. During GPS outages, POS LV will 
continue to provide accurate heading measurements drifting at 
the rate of about 1 arc min/min.  Accurate heading is critical for 
robotic vehicle navigation especially when intermittent or non 
existent GPS conditions occur over extended periods of time.  
 
The distance measurement instrument (DMI) is another 
essential piece of the POS LV hardware which outputs pulses 
representing fractional revolutions of the instrumented wheel.  
These pulses are converted by the POS LV into measurements 
of incremental distance travelled by the vehicle when no GPS is 
available.  In the 2005 DARPA Grand Challenge both Red 
Team vehicles H1ghlander and Sandstorm utilized DMI data 
not only to bridge GPS outages and provide POS LV with 
incremental distance estimation, but as an input into the velocity 
controller for detection of when the vehicle may be stuck.  
Wheel slippage is monitored by comparing the DMI output to 
the velocity reported by the POS LV system.  When the system 
reports speeds over 5m/sec and a velocity of 0 m/sec., the 
vehicles execute a set of protocols utilizing the perception 
system and POS LV data to find an alternate path to the next 
pre-programmed point. 
 
 

3. THE 2005 DARPA GRAND CHALLENGE – A 
CHALLENGE IN SENSOR FUSION 

For the 2005 DARPA Grand Challenge Applanix collaborated 
with Carnegie Mellon’s Red Team for the position and 
orientation component of their two entries into the race, 
H1ghlander and Sandstorm [2].  Both vehicles utilized a series 
of LIDAR and radar systems to sense terrain and feed that 
information into onboard computers which would modify pre 
planned route information to avoid obstacles and deal with 
changes in terrain.  The data provided by the POS LV is 

 
 

Figure 3: Sandstorm (left) and H1ghlander (right) were 
developed to navigate at high-speed in desert terrain. 

 
essential in governing vehicle dynamics to safely navigate the 
course for real time operation.  The Red Team’s approach 
involved a methodical analysis of the course terrain and 
modification of the RDDF (the DARPA defined route definition 
file) in order to provide both vehicles the optimum path.  
LIDAR data (provided through a gimbal located on the roof of 
the vehicle which provided medium and long range terrain data) 
and supplemental lasers (scanning the boundaries of the 

navigable track) in addition to the short range radar (vital for 
detecting targets in the immediate vicinity of the vehicle), were 
incorporated to form a view of the world within which the 
robots would sense and evaluate terrain.  Position information 
from the POS LV is critical in determining the direction of 
rotation of the gimbal in order to sense the oncoming terrain and 
georeferencing point cloud data [3]. 
 
The Red Team utilized a path-centric architecture which 
provided a simple method for incorporating a pre-planned route. 
The primary reason in utilizing this approach was to reduce the 
search space for a planning algorithm from the square of the 
path length to linear in the path length, since planning is 
performed in a corridor around the pre-planned route. The path-
centric approach avoided problems with arc-based arbitration 
such as discontinuities in steering commands (due to 
contradictory information) and jerky control (due to discrete 
arc-sets) [4].  
 
With data derived from the LIDAR and radar systems, it is 
fused into a composite model of the terrain as illustrated in 
figure 4.  The data is processed and is assigned a value dictating 
its ‘cost’.  Lower elevations (shown in green) are assigned a 
lower cost whereas higher elevation (shown in red) is assigned a 
higher cost.  The autonomous vehicle is ‘trained’ to navigate on 
the low cost sections of terrain and make modifications to its 
pre programmed route in the event obstacles or terrain 
anomalies block its intended path.    Accurate position and 
orientation estimation is essential to this process.  Map fusion is 
critical to the robustness of the navigation process, as it enables 
the system to cope with sensor failures and missing data.  In 
addition to this, deriving data from multiple sources compares 
sensor input to account for anomalies.  If a sensor is damaged 
and not providing accurate data, the processing algorithms will 
accord that sensor input a lower degree of confidence and adjust 
its contribution to the overall weighting of the data 
characterization and mapping process. 
 

 
 

Figure 4: An example cost map showing low and high cost 
terrain. 

 
Errors in terrain characterization can, in most cases, be 
attributed to errors not in the data acquired by the sensor, but by 
errors in position and orientation estimation.  As demonstrated 
in Figure 6a which shows test data from Stanford University’s 
2005 entry ‘Stanley’, inaccurate pose can cause the vehicle to 
stop (Figure 6b) as all oncoming terrain will be perceived as not 
being traversable.  The illustrations mark red terrain as not 
traversable, white is low cost terrain and grey areas are not 
known.  The blue corridor is the DARPA assigned route.  This 
pose error of less than 0.5 degrees in roll/pitch is enough to 
force the vehicle off the course if ignored [5].  In tests carried 
out by the Team, referenced terrain was erroneously classified 
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as not navigable 12.6% of the time with a height threshold 
parameter of δ=15 cm [6]. 

 
Figure 5: An illustration of fused sensor maps 

 
Planning and Vehicle Control 
With reliable data from the POS LV integrated into the drive-
by-wire systems of both Red Team Robots, pure pursuit 
tracking was made possible.  However a method to maximize 
the performance of both vehicles was needed.   
 

 
Figure 7: Topography data overlaid on imagery 

 
Human drivers adjust to changing terrain / weather conditions in 
addition to interpreting a curves apex to maximize the 
efficiency of a turn rather than following a straight line denoting 
the curve and ‘jerking’ through it.  This is not efficient and 
providing the robot with apex entry and exit information, in 
addition to terrain condition, are two ways in which 

performance was maximized.  Terrain data can be from maps or 
aerial imagery, but high fidelity and accuracy are achieved by 
using POS data to register laser range scans into models that we 
call “drive-by topography.”  These models are obtained by 
driving a vehicle equipped with laser scanner and POS system 
over terrain and recording topographic imagery.  The method is 
broadly applicable for detailed surveys that are unachievable 
from satellite or aerial flyover [7].   
 
Detailed terrain topography can be acquired by collecting range 
scanner and vehicle position measurements while driving. This 
was done with an H1 Hummer called ‘Topographer’ which 
utilized a POS LV and laser scanner to derive drive by 
topography typically with .25m resolution and 1.5m accuracy.  
This data is combined to generate a height map reconstructed by 
solving for the position of each range measurement in 3-D space. 
The resulting surface models provide resolution and accuracy 
that are unobtainable from satellites or from traditional maps.  
An example of the detail of topography is shown in Figure 7.  
 
 

Figure 8: Result of pre-planning process 
The entire robot preplanning process relies on accurate terrain 
and known parameters of vehicle performance to detail safe 
driving parameters while minimizing the time it takes to 
complete a section of the course [8].  The result of pre planning 
is illustrated in Figure 8.  The black lines denote raw RDDF file 
waypoints and speed limits provided by DARPA.  The red 
dotted path illustrates the route as edited by human planners 
heavily interpolating the original set of waypoints.  These 
smoothed splines form the basis of navigating in and out of 
curves.  Should obstacles be encountered, the robot generates its  

 
Figure 6: Illustration of how small errors in position and orientation can provide erroneous terrain characterization 
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own viable path candidates using the interpolated path as a 
reference.  Utilizing this approach, control points, and spline 
angle vectors that adjust to specify the location and orientation 
of a path. 
 
 

4. THE 2007 DARPA URBAN GRAND 
CHALLENGE – THE CHALLENGE OF A DYNAMIC 

ENVIRONMENT 

The 2005 Grand Challenge pushed participants to develop 
solutions for terrain perception and obstacle avoidance which 
required obstacle detection and avoidance at ranges of 40m 
directly in front of the vehicle.  This next iteration of the Grand 
Challenge in an urban environment pushed the state of the art 
not only in perception, but object prediction and autonomous 
vehicle interaction in dynamic environments.  Teams needed to 
contend with spurious GPS conditions in some areas of the 
course, ensuring the robots followed the rules of the road and 
interaction with 50 manned vehicles simulating traffic along 
with the other robots attempting to finish DARPA’s three 
mandated mission tests.  Each of these missions tested different 
core skills (parking, traffic collision avoidance, driving 
precision) and needed to be completed in the shortest amount of 
time.  The intention of each of the missions was to test how the 
vehicles interacted with situations human drivers encounter on a 
regular basis.  For example, there were several intersections 
where four vehicles were waiting at a stop light.  The 
autonomous vehicle needed to  know not only when it was safe 
to proceed, but deal with other vehicles which may malfunction 
and need to get out of the way while taking into consideration 
other traffic and the rules of the road.  This required a new 
breed of sensors which provided the vehicle with a 360 
representation of its surroundings.  Such capability is shown in 
Figure 9. 
 
 

 
Figure 9: 360 degree scanning LIDAR for situational awareness 

 
The Teams demanded very high performance from their 
positioning and orientation systems.  Pose estimation was 
critical to perception, planning, control and providing key data 
to the drive-by-wire systems of autonomous vehicles.   As 
demonstrated in the following architecture from Tartan Racing, 
accurate position and orientation estimation was essential to the 
perception and world modeling routines constructed by the 
robot.  As discussed previously, data fusion is a key factor in 
determining how successful the robot is in characterizing and 
interacting within its environment to achieve its mission.  Pose 
estimation is provided to the behavior generation and motion 
planning routines which are bounded by the mission planning 
parameters programmed into the vehicle.  In each phase of the 

mission, the robot needed to integrate the composite 
representation of the world and understand what were safe and 
unsafe maneuvers given the changing targets around it impeding 
its route. 
 
Given the missions and skills needed to be demonstrated by the 
robots, the benefits of pre-planning were not as profound as 
with the 2005 Challenge.  Teams did require a substantial 
amount of data up-sampling from the sparse points provided in 
the DARPA RNDF file.  However, instead of having 2 hours to 
prepare the vehicle, Teams only had 15 minutes between 
missions to prepare for the next portion of the race.  Route 
planning was absolutely critical to finish the missions in the 
least amount of time, however the missions required much more 
processing of real time obstacle avoidance rather than following 
exact waypoints.  This required high bandwidth, low latency 
data to be constantly available to the system especially for 
dynamic data fusion.  Detecting a static obstacle is a simple 
process of determining where the target is located, what the lane 
corridor as defined by the Robot’s sensors as compared to the 
RNDF is and what is the safest speed and steering angle around 
the obstacle to avoid it. 
 
 

 
 

Figure 10: Tartan Racing Architecture [9] 
 

 
 

Figure 10: Vehicle Tracking and Prediction 
 
When the obstacle is dynamic, there are three fundamental 
challenges.  The first is reliable position tracking relative to 
where the vehicle is and where it needs to go (in the local 
coordinate).  Second, with accurate range and target bearing the 
robot can determine what lane the obstacle is in from the route 
network definition file (RNDF) or if it is off the road.  This 
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provides vital information on what the obstacle is doing.  Third, 
and most importantly, what is the predicted path of the obstacle.  
All of these functions depend heavily on highly accurate pose 
estimation. 
 
Estimation of state and feature extraction all depend on accurate 
pose estimation.  As mentioned previously, errors in pitch and 
roll of only 0.5 degrees can result in false characterization of 
terrain and obstacles.  This is more critical in sensing obstacles 
far away rather than close to the vehicle.  As the course 
presented obstacles in rapid succession the robots required 
accurate pose estimation to avoid colliding with them.  However, 
errors in roll and pitch are more pronounced over longer 
distances and higher speeds.  The absolute vertical error 
increases as the pitch error angle expands over the range of the 
sensor. 
 
One of the key elements which determined success in this 
Urban Challenge was real time situational awareness and data 
fusion.  Such a capability required two levels of characterization, 
that of the robotic vehicle in relation to the road and the 
dynamic obstacles on it.  The challenge is illustrated in figure 
10 where the robot is sensing the way to a waypoint, but 
encounters traffic around it.  The vehicle must not only track 
and predict where it will go, but it must do this while tracking 
within its lane, sensing the terrain (road radius of curvature, 
grade / cross fall) to ensure any maneuvers are within the 
performance envelope and actually predict where the obstacle 
will move to.  In the previous Grand Challenge robots had a 
choice of path candidates (in the Red Team example given 
previously, an onboard computer generates ‘s’ splines or 
multiple path candidates immediately adjacent to the intended 
path of travel, all which are viable alternate routes taking into 
consideration the vehicle’s dynamic state).  Here, the path 
candidates around an obstacle need to be able to change rapidly 
and the vehicle will do most of the thinking. 
 
 

5. RESULTS OF THE RACE 

The DARPA Urban Grand Challenge took place in Victorville 
California at George AFB.  The National Qualifying Event 
(NQE) saw thirty six Teams participate in a number of rounds 
designed to illustrate the requisite skills required to successfully 
complete the three DARPA missions.  Of the thirty six Teams, 
eleven were qualified to participate in the final race on 
November 3rd, 2007.  Of the eleven Teams, only six managed to 
finish all three missions.  Applanix Corporation partnered with 
Tartan Racing, Stanford Racing and MIT to secure first, second 
and fourth place finishes.   
 

Team 
Name ID# Vehicle Type 

Time 
Taken 
(h:m:s) 

Result 

Tartan 
Racing 19 Boss 2007 Chevy 

Tahoe 4:10:20 
1st Place; averaged approximately 
14 mph (22.53 km/h) throughout 
the course  

Stanford 
Racing 03 Junior 

2006 
Volkswagen 
Passat Wagon 

4:29:28 
2nd Place; averaged about 13.7 
mph (22.05 km/h) throughout the 
course 

VictorTango 32 Odin 2005 Ford 
Hybrid Escape 4:36:38 3rd Place; averaged 13 mph (20.92 

km/h) throughout the course 
MIT 79 Talos Land Rover LR3 6:00:00 4th Place.  
The Ben 
Franklin 
Racing 
Team

74 Little Ben 2006 Toyota 
Prius 

No 
official 
time. 

Finished 

Cornell 26 Skynet 2007 Chevy 
Tahoe 

No 
official 
time. 

Finished 

Figure 11: DARPA Urban Grand Challenge Results 

6. URBAN GRAND CHALLENGE LESSONS 
APPLIED TO REAL WORLD SCENARIOS 

The goal of the Urban Grand Challenge is to apply the various 
technologies employed to successfully navigate the course to 
real world problems.  Looking at this competition at its most 
fundamental level, these autonomous vehicles are mobile 
mapping platforms.  The advances made here have significant 
implications for how mobile mapping data is used.  Consider 
the automotive industry for example.  Currently, GPS is utilized 
as a convenience feature utilizing GPS, map matching and 
odometer data to route a driver (albeit not very accurately) 
through GPS outages.  When looking at position and orientation 
data in terms of driver assistance / active safety systems, the 
accuracy required changes dramatically. Data needs to be 
thought of in a layered approach for this application much like 
the data fusion discussed above.  Base maps utilized by onboard 
computers need to be very accurate for sensors to determine 
dynamics in relation to a vehicle’s current and predicted path so 
the vehicle can determine if a driver is making turns at unsafe 
speeds or passing through an intersection without stopping.  By 
having detailed maps along with accurate position and 
orientation data, vehicles will be able to actively ensure the 
safety of passengers. 
 
Military applications present another example of how vehicle 
automation saves lives.  The Pentagon is aiming to have one 
third of its forces automated by 2015.  This applies to combat 
forces as well as re-supply elements.  Mobile mapping will 
become particularly automated in this field and employ several 
layers of data from different sources to achieve a particular 
mission.  For example, UAVs employing LIDAR and other 
sensors will provide up to date intelligence for automated 
ground convoys traveling through hostile terrain. Ground 
vehicles utilizing their own LIDAR and optical sensors will 
map their way to an objective relying on accurate base maps 
and accurate position and orientation data.   
 
 

7. SUMMARY 

Accurate and reliable position and orientation data is a 
fundamental part of autonomous vehicle guidance and control.  
What we have shown is that even small errors in pose 
estimation can lead to erroneous terrain characterization which 
impacts vehicle performance.  The significance of accuracy was 
highlighted in the Urban Grand Challenge where dynamic 
obstacles and terrain characterization in adverse GPS 
environments were key skills that robots demonstrated in order 
to successfully navigate the course and complete the three 
DARPA missions.  Position and orientation data accuracy was 
essential to win the race which required sensor fusion and 
precise vehicle dynamic control to interact with a constant 
changing environment.  These core elements will revolutionize 
how we think about mobile mapping in general.  The precise 
location of roads, their geometry and roadside features will be 
essential elements for vehicle guidance and control, not just 
basic navigation.  Accurate geospatial information and the real 
time interpretation of that information are essential elements for 
autonomous vehicles to demonstrate before such technology 
becomes mainstream. 
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