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ABSTRACT: 
The MEDUSA camera system is a high resolution earth observation instrument designed to operate from a long endurance UAV 
flying at stratospheric altitudes. Due to the technical constraints imposed on the instrument regarding mass, power and dimensions, 
the MEDUSA instrument shall experience large temperature variations induced by its varying environment in which it is operated. 
The induced physical changes of the optical system (lenses and opto-mechanics) imply that the parameters of the geometric camera 
model of the MEDUSA instrument cannot be assumed to be constant. Generating geometric “correct” images under those 
circumstances requires a calibration procedure which is able to respond to this dynamic behaviour. 
This paper presents the calibration strategy for the MEDUSA instrument which is based on a full in-flight self-calibration with block 
bundle adjustment. A theoretical estimate of the geometrical accuracy of MEDUSA images has been explored. Based on this 
approach a first sensitivity check to certain temperature variations within the optical system has been addressed. A more detailed 
study has started making use of a refined image simulator based on the collinearity equations, a camera model and image distortion 
models. First preliminary results of this approach show the geometric accuracy over the complete image within different temperature 
windows for a camera model with constant parameters. 
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1. INTRODUCTION 

The PEGASUS (Policy support for European Government by 
Acquisition of information from Satellite and UAV-borne 
Sensors) project aims to fill in the gaps that conventional Earth 
observation cannot provide in terms of spatial and temporal 
aspects (Everaerts, 2004). It uses a High Altitude Long 
Endurance (HALE) Unmanned Aerial Vehicle (UAV), called 
Mercator-1, which will ultimately fly at stratospheric altitudes 
persistently for weeks and even months. To do this, the platform 
is powered by solar energy during daytime and high capacity 
batteries during the night. The airplane design is largely driven 
by mass minimization where the use of lightweight composite 
material allowed to realize a total mass of about 30 kg. In order 
to accomplish disaster monitoring and large-scale mapping as 
its first phase target applications for the Pegasus project, a high 
resolution camera system, MEDUSA (Monitoring Equipment 
and Devices for Unmanned Systems at high Altitude), is being 
developed by a consortium led by VITO (Delauré 2007, Van 
Achteren 2006, 2007). 
 
The MEDUSA camera system is designed to deliver imagery in 
the visual spectrum with a spatial resolution of 30 cm from an 
altitude of 18km and covers a swath of 3 km. 
 
The technical constraints which the MEDUSA instrument is 
facing, are severe due to the restricted payload capacity of 
Mercator-1: no more than 2.5 kg total system mass, fitting 
within a horizontally oriented cylinder of 12 cm diameter and 1 
m in length, consuming less than 50 W of electrical power. 
Apart from those limitations the environmental conditions of 
the stratosphere are an important factor to be taken into account 
in the instrument development process. Since the variation of 
the environmental parameters induce physical changes of the 

optical system, the interior parameters (e.g. focal length, 
principal point coordinates, etc) of the optical system are 
expected to vary accordingly. Calibration of MEDUSA needs to 
take the consequences of these constraints into account. In this 
paper, we discuss the geometric calibration strategy.  
 
 

2. MEDUSA INSTRUMENT 

2.1 Top-level system requirements 

The MEDUSA instrument is designed for large scale mapping 
and disaster monitoring. The top-level system requirements of 
the MEDUSA camera are summarized in Table 2-1. 

 
 

Ground resolution 30 cm (@ 18 km ) or less 

Spectral range 400 – 650 nm (RGB) 

Swath width 3000 m (>= 10 000 pixels)

SNR  100 @ 8:00 am equinox 

Sensor type Frame 

Shutter Electronic 

Forward overlap  60% max 

RF downlink range  150 km from the ground 
station 

 
Table 2-1 MEDUSA system requirements 
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2.2 Environmental conditions 

The lower stratosphere’s environment is characterized by low 
air pressure (down to 60 mbar) and low relative humidity. The 
ambient temperature is low and varies around -55°C with a 3 
sigma deviation going up to 15°C (based on averaged 
temperature–data acquired above Belgium over a 20 year period. 
Source: the Royal Metrological Institute of Belgium). Apart 
from the fluctuating air temperature, the temperature within the 
instrument is dominated by its two main heat sources: sun 
(external) and electronic power dissipation (internal). As the 
MEDUSA camera system is not screened by the air plane it 
experiences a strong temperature variation induced by the 
relative orientation of the sun with respect to the instrument. 
This is shown in Figure 1. After a sharp rise in temperature at 
start-up in the morning, the electronics modules of the 
instrument produce a constant heat input. 
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Figure 1: temperature variation of the MEDUSA system during 
one day (21st June above Belgium) at various positions within 

the MEDUSA instrument. 
 
The following effects occur: 
• Temperature variation during day-time 
• Temperature variation depending on day in the operational 

season 
• Thermal gradient along the axis (nose is coldest, back side 

warmest due to heat dissipation of the electronics) 
• Thermal gradient top-down due to the different heat input 

(sun versus earth) 
 
2.3 MEDUSA Camera System Design 

The MEDUSA instrument is plugged onto the front side of the 
fuselage of the Mercator-1 UAV. To comply with the frontal 
area constraints of Mercator, the MEDUSA instrument is 
housed in a horizontally oriented cylindrical volume with a 
diameter of 12 cm and a length of about 1 m. The MEDUSA 
instrument, of which more details are described in (Delauré 
2007, Van Achteren 2006, 2007), consists of an optics and an 
electronics compartment Figure 2 
 
Figure 2 shows the layout of the MEDUSA instrument. The 
former is located at the front of the instrument. It houses the 
optical system which consists of a folding mirror (to cope with 
the horizontal orientation of the instrument), a set of lenses and 
the focal plane assembly containing two CMOS sensors (one 
panchromatic and one colour) of 10000x1200 pixels each. The 
focussing elements of the optical system are fixed together in a 
metal structure (4-lens tube) which is mounted in the Carbon 
Fibre housing.  

The electronics compartment is located at the backside of the 
instrument. It houses the command and data handling unit 
(responsible for on-board data processing and housekeeping 
within the instrument), and a lightweight IMU and dual 
frequency GPS-system. Via an S-band transmitter and antenna 
JPEG2000 compressed image data is being transferred at a rate 
of 20 Mbps to the ground control station. The instrument is 
designed to generate a forward overlap of 70% taking into 
account the forward speed and attitude variations of the aircraft. 
This is realized at a frame rate of 0.7 fps. 
 
Due to the large temperature variations to which the MEDUSA 
instrument is subjected and the temperature sensitivity of the 
optical system (focal shift of 20µm/°C), a passive thermal 
compensation system is implemented. This compensator rod, 
shown in Figure 2, adjusts the distance between the 4-lens tube 
and sensor plane, driven by the temperature within the optics 
compartment.  This way the optical system is kept in focus 
continuously. 
 
Apart from the temperature sensitivity the optical system is also 
pressure dependent. A focal shift of about 300µm takes place 
when reducing the pressure from ground-level atmospheric 
conditions to stratospheric pressure (60 mbar). For this reason a 
mechanical adjustment needs to be performed on-ground 
depending on the expected operational in-flight pressure regime. 
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Figure 2: Layout of the Medusa instrument 

 
 

3. GEOMETRIC CALIBRATION CONSIDERATIONS 

Due to the specific design and operational environment of the 
MEDUSA system, the geometric calibration of the MEDUSA 
instrument is not straightforward. 
 
Since the MEDUSA instrument faces strong variations of its 
environment during its operational cycle, the optical system 
undergoes physical changes. For this reason the camera 
parameters describing the MEDUSA imaging system cannot be 
considered to be constant during the operational window. First 
analyses of the current design indicate the following 
dependencies: 

• Focal length variation (due to change of refractive 
index and lens surfaces)  20 µm/°C  

• Due to the fact that the fixation of the 4-lens tube to 
the carbon fibre structure is not athermal, the 
principal point can shift with about 22 µm over a 
temperature range of 50°C 

 
First simulations show no significant temperature dependence 
on the radial and tangential lens distortions.  
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The geometric calibration approach for the MEDUSA 
instrument needs to be able to cope with this dynamic 
behaviour. 
 
Second challenge is that the instrument cannot be calibrated at 
room temperature and atmospheric pressure. Therefore a ground 
calibration of the MEDUSA instrument would require the 
operation to be performed in a thermal vacuum chamber. 
Although this is possible in principle, it is difficult to realize the 
exact thermal conditions (radial and axial thermal gradients) in 
this simulated environment. 
 
A third aspect to be taken into account is the presence of the 
folding mirror. Further investigation is necessary to investigate 
how possible deformations of the reflecting surface, induced by 
temperature variations of the mirror material and its interface 
pieces to the athermal carbon fibre structure, need to be 
modelled. 
 
 

4. CALIBRATION STRATEGY 

The MEDUSA instrument is designed for large scale mapping 
and disaster monitoring. Therefore the primary focus of the 
calibration is on geometric correction of the imagery, which is 
the topic of this paper. Radiometric calibration of the 
instrument shall be considered in a second phase. 
 
Ground geometric calibration of imaging platforms remains a 
most complex operation (Zeitler, 2002). A direct drawback of 
ground calibration is that the results are only valid for similar 
operational conditions.  
 
In case of the MEDUSA instrument, this assumption is not 
valid (see above). For this reason we have opted for a full in-
flight geometric calibration approach based on block bundle 
adjustment. Such a geometric calibration strategy has proved to 
be successful for other more complex imaging systems such as 
the ASD40 from Leica (Tempelmann, 2003).  
 
4.1 Geometric Ground calibration 

During the performance test of the optical system in a thermal 
vacuum chamber a rough determination of the focal length and 
principal point will be performed. This will be used as starting 
value for the in-flight calibration method. 
 
4.2 Geometric In-flight calibration 

The in-flight calibration is prepared by a two-phase sensitivity 
analysis for various aspects of the instrument based on expected 
ranges of environmental parameters.  
In a first phase, the generalized photogrammetric accuracy of 
the instrument is explored for the “normal case” (Kraus, 2007). 
This provides a first insight into the significance of different 
parameters on the potential photogrammetric accuracy of the 
MEDUSA instrument.  
 
According to the normal case equations: 
 
 xbYX m σσσ ⋅==  

 
B
Zm xbZ ⋅⋅= σσ  

 

with 

 
hFocalLengt

Zmb =  

 Z = elevation 
 σx= accuracy of tie point identification in the image 
 B = distance between observations 
 
For the expected accuracy at which tie points can be identified 
(σx) a value of 1/3 of the pixel size is taken as a first estimation. 
In best case scenario’s, this accuracy can reach ¼ of a pixel or 
better. 
 
The distance between observations can be estimated based on 
the image characteristics and planned along track image overlap: 
 )1( RWB −⋅=  
with 

 
hFocalLengt

PixelsizePixelsZW ⋅
⋅=  

 R = overlap 
 
When we assume the Medusa instrument will operate between 
15000 and 21000 meters above ground, the expected overall 
planar accuracy can be estimated to be within the decimetre 
range (Figure 3). 
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Figure 3: Planar accuracy of Medusa versus altitude 

 
The overall vertical accuracy is expected to be approximately 
1.5 meter, when using 60% side overlap (Figure 4). 
 

15000 16000 17000 18000 19000 20000 21000

1.
3

1.
4

1.
5

1.
6

1.
7

Estimated vertical accuracy of Medusa

Elevation [m]

Ex
pe

ct
ed

 v
er

tic
al

 a
cc

ur
ac

y 
[S

td
ev

 m
]

 
Figure 4: Vertical accuracy of Medusa versus altitude. 

By comparing the expected vertical accuracy as extracted out of 
along track (Figure 5) versus across track (Figure 6) 
overlapping imagery, it is highly advisable not to use along 
track overlap for the extraction of elevation data. The vertical 
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accuracy is ten times lower when only along track overlap is 
used.  
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Figure 5: Effect of along track overlap 
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Figure 6: Effect of across track overlap on generalized vertical 

accuracy 

Because of the distinct rectangular shape of the sensor, the 
image base is much smaller along track compared to across 
track. The extreme altitude at which the Medusa operates 
amplifies this. 
 
The same “normal case” approach also allows us to get a first 
impression on the effect of system temperature on the geometric 
performance of the instrument. Simulation studies have 
indicated that the focal length changes with 20 μm per °C, we 
can simulate the effect on the overall planar accuracy, assuming 
a flying height of 18000 meter (Figure 7): 
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Figure 7: Effect of temperature on generalized planar accuracy 

 
Figure 7 indicates clearly that the variable focal length, caused 
by temperature differences, has a limited effect on the 
generalized photogrammetric performance of the Medusa 
instrument. 

When we compare this temperature related effect with 
variations in overlap, it becomes clear that the temperature 
effect on focal length is negligible (Figure 8): 
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Figure 8: Effect of changes in focal length  versus along and 
across track overlap. The vertical lines visible in the plot 
correspond to isolines of equal generalized vertical 
photogrammetric accuracy [stdev[m]] 
 
The highest gradient in generalized vertical photogrammetric 
accuracy is visible along the “% overlap” axis. Relative to this, 
changes in focal length due to expected temperature differences 
has no influence.  
 
In a second phase, sensitivity analysis is performed more in 
detail based on collinearity equations, a camera model and 
image distortion models.  A refined (image) simulator is 
developed that allows us to simulate each characteristic of the 
Medusa instrument in detail and estimate the effect on 
measurement precision and accuracy. Figure 9 illustrates the 
concept. 
 
These simulations allow us to get a thorough understanding of 
the type of image distortions we can expect. Moreover, it allows 
us to estimate the effect on the geometric performance of the 
Medusa instrument if we cannot correct for the distortions.  
 
Figure 10 illustrates preliminary results of this approach: In 
case changes in focal length would not be taken into account 
when extracting object (real world) coordinates out of imagery 
using direct georeferencing, measurement errors of up to 6 
meters can be expected at the outer regions of the imagery. No 
additional error is simulated in the exterior orientation  
(theoretical GPS/IMU values) for these direct georeferencing 
simulations. 
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Figure 9: Medusa simulator concept 
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Figure 10: Effect of changing focal length on direct 

georeferencing. 

 
This indicates that a thorough self-calibration approach is 
necessary when metrically correct products need to be derived 
from the Medusa instrument. 
 
The in-flight calibration will be based on self-calibration by 
means of block bundle adjustment. The DGAP block bundle 
adjustment software (http://www.ifp.uni-stuttgart.de/ 
publications/software/openbundle/index.en.html) will be used 
for this. A predefined flight pattern will be flown over a fixed 
study area with sub centimetre accurately measured GCPs. 
Figure 11  illustrates a minimally required flight pattern 
resulting in maximally overlapping imagery with flight over the 
same area in opposite directions. 
 
Because of the expected temperature effects, a specific flight 
pattern, oriented relative to the sun’s positions is needed. The 
data will be processed in three independent blocks, illustrated as 
numbered arrows in Figure 11. During the flights within block 
one, the temperature gradient within the instrument will remain 
relatively constant. For flights in block two and three, 
temperature gradients will change direction. The proposed 
flight pattern will allow to examine if the foreseen temperature 
gradients will have a significant effect on the optical 
characteristics of the system.  
 
 

 
 

Figure 11: Minimal required flight pattern for Medusa 
instrument calibration 

 
Parameters that will be estimated by block bundle adjustment 
are: 

• Physical models 
o Exterior orientation (6 parameters) 
o Interior orientation 

 Principal point offset (2 
parameters) 

 Focal length offset (1 parameter) 
o Radial-symmetric distortions (3 parameters) 
o Radial-asymmetric and tangential 

distortions (2 parameters) 
o Affinity and shear in the image plane (2 

parameters) 
• Mathematical models 

o Ebner (12 parameters) 
o Grün (44 parameters) 

 
Because of the correlations that may exist between some 
parameters (e.g. Platform altitude versus focal length offset), 
the adjustment will be run piecewise. 
 
For modern geometric frame cameras, it can be expected that 
the parameters of the mathematical models are not significant: 
these parameters are not correlated with the interior and exterior 
orientation of the imaging system and are used to correct 
distortions in the plane caused by for example deformations of 
analog film products. However, usage of an optical mirror in 
the Medusa instrument might introduce similar deformations 
and will therefore be examined with care. 
 
 

5. CONCLUSION AND OUTLOOK 

A specific calibration strategy is proposed for the Medusa 
instrument. Because of the technical constraints of the 
instrument and its specific operation environment, in-flight 
calibration was selected. On the one hand, the instrument 
comprises an optical mirror, which could introduce planar 
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image distortions uncommon in modern metric frame cameras. 
On the other hand, temperature is expected to have an impact 
on various optical characteristics of the Medusa instrument.  
 
A thorough sensitivity analysis will be conducted at first. Block 
bundle adjustment, in combination with a specific flight pattern 
will be used to determine the significance of thermal effects on 
the geometric performance and the system’s internal and 
external calibration model. 
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