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ABSTRACT: 
 
In this paper the unit quaternion is used as a substitute for describing the attitude of a camera to overcome the shortcomings of Euler 
angles on the description and interpolation of orientation, corresponding collinearity equation is then derived and linearized. At the 
same time the Spherical linear Interpolation (Slerp) of unit quaternion is introduced into the bundle adjustment of three-line imagery 
with orientation image method. By making use of Slerp formula to accomplish uniform interpolation of camera attitude on the 
sampling cycles between two orientation images, new mathematic model based on unit quaternion for the reconstruction of the 
exterior orientation parameters of three-line images is set up. Two ADS40 datasets have been used for validating related algorithms 
proposed in this paper. Experimental results show that bundle adjustment based on unit quaternion achieves the accuracy of about 
one pixel both in horizontal and height directions when locating a full control point at each corner of the block. It provides us an 
ideal and robust approach for the calibration and triangulation of three-line array CCD sensor. 
 
 

1. INTRODUCTION 

Since the year of 2000, two kinds of airborne digital cameras 
have been taken into world market, one of them is characteristic 
of frame CCD sensor, the other one is characteristic of three-
line CCD sensor. Under current technological conditions, three-
line sensors such as ADS40 of Leica Geosystems, HRSC-AX of 
DLR, have some advantages over frame cameras because of its 
larger side coverage and higher aerial photography efficiency 
(Tempelmann, 2000; Scholten, 1999).To recover the exterior 
orientation (EO) parameters of each scan line of airborne 
pushbroom sensors, GPS/IMU system must be equipped to 
acquire auxiliary orientation data, which is the indispensable 
information for the geometrical rectification of twisted raw 
images and its georeferencing.  
 
For the triangulation of three-line imagery, the approach which 
was first proposed by Hofmann is most widely used (Hofmann, 
1984; Ebner, 1988). Here the exterior orientation parameters are 
estimated only at certain time intervals named orientation 
images (OI). The Lagrange polynomials then model the 
assumed smooth variations of sensor position and attitude 
between adjacent OIs. There are some shortcomings for this 
traditional OI approach. Firstly the attitude of sensor is 
described by three Euler angles omega, phi, kappa, so the 
orientation interpolation between adjacent OIs is difficult 
because of the periodicity of Euler angles. The numeric range 
of input angles must be restricted manually to ensure 
interpolation results reasonable. Furthermore the approach can 
not accomplish smooth interpolation. Secondly the IMU 
misalignment model described by Euler angles is fairly 
complicated and not robust enough when image strip with 90-
degree kappa angle exists in the block. These limitations can be 
overcome by the introduction of quaternion.  
 
In this paper a new georeferencing technique of three-line 
images based on quaternion is proposed, in which the EO 
angular elements omega, phi, kappa are replaced by unit 

quaternion. Corresponding collinearity equation is 
reconstructed, and then the IMU misalignment model is rebuilt 
by quaternions to realize the simplicity and linearity because 
that only multiplication and addition operations are included. 
Additionally, the Spherical Linear Interpolation (Slerp) is 
introduced into orientation image approach to accomplish 
smooth and uniform interpolation of camera attitude. Two 
ADS40 datasets are used to validate related algorithms and 
experimental results are discussed in detail. 

 
 

2. BASICS OF QUATERNION 

2.1 

k

Definition  
Quaternion is the extension of complex numbers in 4D space, 
which was first invented by Irish mathematician William 
Hamilton in 1843. It is normally expressed as follows (Horn, 
1987; Dunn, 2002): 
 
 

0 1 2 3i jq q q q q= + + +& ,   ( 0,1,2,3)iq i = ∈ℜ  
 
 

where is the real part and q q  is the imaginary 
part. are the bases of quaternion, for which following 
relations hold： 

0q 1 2 3i j kq+ +

i, j,k

 
 

ij ji k= − = , jk kj i= − = , ki ik j= − = , i j    (1) 2 2 2k 1= = = −

k

 

The conjugate of a quaternion, denoted , is obtained by 
negating the vector portion of the quaternion:  

q∗&

 

0 1 2 3
* i jq q q q q= − − −&  
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According to the product rules given in equation (1), the 
multiplication of quaternion can be derived (Horn, 1987) : 
 
 

( )qr Q q r=& & & &    ( )rq Q q r=&& & &                                       (2) 
 
 

where  and ( )Q q& ( )Q q&  are both orthogonal matrices: 
 
 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( )

q q q q
q q q q

Q q
q q q q
q q q q

− − −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

& , 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( )

q q q q
q q q q

Q q
q q q q
q q q q

− − −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

&  

 
 
It is not difficult to see that quaternion multiplication is 
associative, but not commutative.  
 
2.2 Representing Rotations  

Supposing that z and are two vectors or two points in 3D 
space,  is a unit quaternion. According to the characteristics 
of quaternion multiplication, following equation can be derived 
(Diebel, 2006): 

r 'zr

q&

 
 

10 0 0 1 0
( ) ( )

0 ( )'
Tq q Q q Q q

M q
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦z z z

& & & &r r r
&

0
zr

        (3) 

 
 
Where 
 
 

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
3 1 0 2 3 2 0 1 0 1 2 3

2( ) 2( )
( ) 2( ) 2( )

2( ) 2( )

q q q q q q q q q q q q
M q q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤+ − − − +
⎢ ⎥= + − + − −⎢ ⎥
⎢ ⎥− + − − +⎣ ⎦

&

 
 
Therefore 
 
 

 ' ( )M q=z zr r
& ,  '                                            (4) ( )TM q=z zr r

&

 
 

Considering that both  and ( )Q q& ( )Q q  are orthogonal matrices, 
matrix 

&

( )M q& constructed by the production of Q q  and ( )& ( )Q q  
is also orthogonal, so equation (4) expresses a transformation of 
rotation. It means that formulation r q  performs a 
coordinate rotation from zr  to , where r  and  are the pure 
imaginary unit quaternion corresponding to z

&

rq−=& & && 1'
'zr & 'r&

r
 and 'zr  

respectively, that is, and . [ ]0 Tr = zr& [ ]' 0 ' Tr = zr&

 
2.3 Spherical Linear Interpolation (Slerp) 

Quaternion is very suitable to orientation interpolation, and the 
standard way is spherical linear interpolation. The Slerp 
operation is useful because it allows us to smoothly interpolate 
between two orientations (Zhan, 2004). If we look upon a unit 
quaternion as a point on the surface of a 4D sphere, Slerp will 

interpolate around the shortest arc that connects the two 
quaternions along the surface of the sphere. 
 
Given two unit quaternions  and  with an inclination angle 
of

1q& 2q&
θ , the Slerp function is given by: 

 
 

1 1 2( ) ( ) ( )q t C t q C t q= +& & 2&

&

                                      (5) 
 
 

Where ,  are the projections of q t  on and  
respectively. 

1( )C t 2 ( )C t ( ) 1q& 2q&

 
 

1
sin(1 )( )

sin
tC t θ
θ
−

=       2
sin( )
sin

tC t θ
θ

=  

( ) ( )1 1
1 2 10 20 11 21 12 22 13 23cos cosq q q q q q q q q qθ − −= ⋅ = + + +& &   

 
 

The greatest advantage of Slerp is that the interpolation is 
smooth. It can avoid all the problems that plagued with the 
interpolation of Euler angles (Dunn, 2002). 
 
 

3. COLLINEARITY EQUATIONS DESCRIBED BY 
UNIT QUATERNION 

Collinearity equations are the rigorous image forming equations 
for central projection, which are usually considered as the most 
important equations in photogrammetry. The collinearity 
equations between object space coordinates ( , , )X Y Z  and 
image space coordinates ( , )x y  are (Wang, 2007): 
 
 

1 1 1

3 3 3

2 2 2

3 3 3

( ) ( ) (
( ) ( ) (

( ) ( ) (
( ) ( ) (

S S

S S

S S

S S

)
)

)
)

S

S

S

S

X a X X b Y Y c Z Zx f f
Z a X X b Y Y c Z Z

Y a X X b Y Y c Z Zy f f
Z a X X b Y Y c Z Z

⎧ − + − + −
= − = −⎪ − + − + −⎪

⎨
− + − + −⎪ = − = −⎪ − + − + −⎩

   (6) 

 
 

Where are the spatial coordinates of the sensor 
perspective centre at the moment when the image is taken; 

( , , )S S SX Y Z
f is 

the focal length of the sensor; a b are the 
elements of a rotation matrix R which is determined by three 
Euler angles ( , ,

, , ( 1,2,3)i i ic i =

)ω ϕ κ . 
 
If the three EO angular parameters ( , , )ω ϕ κ in equations (6) 
which are used to model the attitude of a sensor are replaced by 
unit quaternion, then the collinearity equations based on unit 
quaternion can be obtained. Here the above two formulas 
don’t change themselves, only that the rotation matrix R is 
not constructed by Euler angles ( , , )ω ϕ κ  any more but the 
quaternion components : 0 1 2 3( , , , )q q q q
 

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

q q q q q q q q q q q q
R q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤+ − − + −
⎢ ⎥= − − + − +⎢ ⎥
⎢ ⎥+ − − − +⎣ ⎦
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And soon, the EO parameters change to 
 correspondingly. To solve these 

parameters in aerial triangulation or single image resection, the 
collinearity equations must be linearized. 

0 1 2 3( , , , , , , )S S SX Y Z q q q q

 
Applying Taylor expansion of ,x y  with respective to EO 
parameters , we obtain the following 
error equations: 

0 1 2 3( , , , , , , )S S SX Y Z q q q q

 
 

11 12 13 14 0 15 1

16 2 17 3 11 12 13

21 22 23 24 0 25 1

26 2 27 3 21 22 23

x S S S

x

y S S S

y

v a X a Y a Z a q a q
a q a q a X a Y a Z l

v a X a Y a Z a q a q

a q a q a X a Y a Z l

= Δ + Δ + Δ + Δ + Δ⎧
⎪ + Δ + Δ − Δ − Δ − Δ −⎪
⎨ = Δ + Δ + Δ + Δ + Δ⎪
⎪ + Δ + Δ − Δ − Δ − Δ −⎩

        (7) 

 
 
Where 

P

k k+1

Fp Np Bp
 
 k-1 k+2

Figure 1.  Orientation image interpolation 
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Z
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This approach has been tested by single image resection (Jiang, 
2007; Wang, 2007). Experimental results show that it can get 
correct solutions under a larger range of initial values than 
traditional way. It is a useful and valuable supplement to 
traditional photogrammetry principle. In this paper this method 
is extended to the bundle adjustment of three-line images while 
taking the advantages of unit quaternion on the description and 
interpolation of orientation. 
 
 

4. BUNDLE ADJUSTMENT OF THREE-LINE IMAGES 
WITH ORIENTATION IMAGE APPROACH 

The principle of orientation image interpolation is illustrated in 
figure 1, in which k-  to  these four sampling cycles with 
equal time intervals are named as OIs. During the triangulation 
process, only the EO parameters of the OIs are updated, while 
those of other sampling cycles are interpolated from adjacent 
OIs by Lagrange polynomials. 

1 k+2

 
In this paper, the classical OI model is modified. The Lagrange 
polynomials are still employed for interpolating the coordinates 
of prospective centres, but the Slerp formula is used for camera 
attitude interpolation. This time the attitude is modelled by unit 
quaternion . 0 1 2 3( , , , )q q q q
 
 

 
 
As illustrated in figure 1, the image point Np of ground object P 
on nadir image strip is captured on scan line j , which is located 
between orientation images k and k . If the EO parameters 
of these two OIs are expressed as

1+
( , , , )k k k k

S S SX Y Z q& and 
 respectively, then the EO linear 

elements 

1 1 1 1( , , ,k k k k
S S SX Y Z q+ + + +& )

)( , ,j j j
S S SX Y Z of scan line j  can be calculated by 

equation (8), which is implemented in ORIMA (Hinsken, 2002): 
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(1 )
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S S S j
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j GPS GPS GPS
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j GPS GPS GPS
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Z t Z t Z Z
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δ

δ

δ

δ

δ

+

+

+

+

+

+
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⎪
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⎪
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⎨

= ⋅ + − ⋅ −⎪
⎪ = ⋅ + − ⋅ −⎪
⎪ = ⋅ + − ⋅ −⎩

j

j

                   (8) 

 
 

Where 1

1

k

k k

t t
t

t t
+

+

j−
=

−
, and ( ), ,j j jX Y Zδ δ δ  are the constant items 

for interpolating error compensation computed from GPS/IMU 
observations. 
 
The interpolation of sensor attitude of scan line j  is carried out 
by Slerp equation (5), which can be represented in components 
form: 
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For the collinearity equations corresponding to image point 

Np  in figure 1, the unknowns include not only the object 
coordinates of tie points, but also the EO parameters 
( , , ,k k k k

S S S )X Y Z q&  and  of adjacent 
OIs when Slerp is adopted in OI interpolation.  

1 1 1 1( , , ,k k k k
S S SX Y Z q+ + + +& )

 
Applying Taylor expansions of equations (8) and (9) with 
respect to the EO parameters of adjacent OIs, the first-order 
differential expressions of the EO elements of scan line j  can 
be derived. Substituting them into equation (7) the linearized 
collinearity equations described by unit quaternion, the error 
equations of image point observations based on unit 
quaternion can be obtained. 
 

Considering that the norm of unit quaternion which is used to 
model camera attitude is equal to one, the correction items 
( )0 1 2 3, , ,q q q qΔ Δ Δ Δ  are not independent. Parameter adjustment 
with constraints, which is discussed in detail in (Huang, 1992), 
is an ideal approach for the aerial triangulation of three-line 
images based on unit quaternion. 
 
For GPS/IMU supported aerial triangulation, the attitude and 
positioning information of the sensor acquired by GPS/IMU 
system should be treated as uncorrelated observations. Usually 
the coordinates of perspective centre are introduced with time-
dependent parameters to compensate the drift effects of GPS 
system. In view of that the axes of IMU can not aligned with 
that of the camera perfectly, the relationship between IMU 
angular observations and exterior orientation angular elements 
can be modelled by boresight misalignment model, in which the 
rotation matrix constructed by EO angles ( , , )ω ϕ κ  are described 
by concatenated multiplication of the rotation matrices built by 
IMU observations  and misalignment 
angles

( , ,IMU IMU IMUω ϕ κ )
( , , )x y ze e e . This conventional IMU misalignment model 

is complicated and non-linearized, in which lots of 
trigonometric functions are involved. Using quaternion the 
multiplication of two rotation matrices in above model can be 
simply represented as the production of corresponding unit 
quaternions, thus only multiplication and addition of quaternion 
components are involved. Moreover, the calculation of anti-
tangent function in traditional model is also avoided. So the 
model is more robust and has distinct technological advantages 
over traditional ones. 
 
 

5. TESTS AND ANALYSES 

5.1 

5.2 

Input Data 
（11） 

Two ADS40 datasets of Waldkirch test field provided by Leica 
Geosystems® are used for the verification of related algorithms 
proposed in this paper. The flight was carried out twice in May 
2002 (WK0205) and September 2004 (WK0409), and their 
flying height above ground was 2000m and 3400m with the 
GSD of 21cm and 36cm respectively. WK0205 block consisted 
of four west-east (WE) strips and two cross strips; WK0409 
consisted of two WE strips and two cross strips. Only the 
forward, nadir and backward panchromatic images were used in 
the following experiments. Thirty ground points had been 
surveyed, and most of them located at the end of zebra crossing. 
The object coordinates of these 30 points had been calculated at 
first by multi-ray forward intersection using post-processed 
POS/AV data. The direct georeferencing errors on horizontal 
and height were 0.31m and 1.03m respectively for WK0205 
block, and 0.88m and 0.29m respectively for WK0409 block. 

（12）

 
Experimental Results of the Block of West-East Strips 

According to the OEEPE test on integrated sensor orientation, 
GPS/IMU aided combined adjustment using very a few 
control points achieves equivalent accuracy to traditional 
aerial triangulation (Heipke, 2002). But for airborne three-line 
images, the question that how many ground control points 
(GCPs) are needed for triangulation when GPS/IMU data is 
introduced is of great interest. So different GCP configurations 
consisting of zero to five GCPs have been designed for the test, 
other points are treated as check points (CKPs). Table 1 and 2 
are the results of WK0205 and WK0409 datasets, for both the 
cross strips are not considered this moment. 
 
 

0σ RMS[m] RMS/GSDNo. of 
GCPs 

No. of
CKPs [µm] XY Z XY Z 

0 30 3.7 0.323 1.023 1.5 4.9
1A 29 3.7 0.235 0.244 1.2 1.2
1B 29 3.7 0.299 0.277 1.4 1.3
2A 28 3.7 0.253 0.249 1.2 1.2
3A 27 3.7 0.211 0.222 1.0 1.1
4A 26 3.7 0.212 0.229 1.0 1.1

4A + 1B 25 3.7 0.212 0.228 1.0 1.1
Note:  A = point at block centre, B = point at block corner. 

 
Table 1.  Triangulation results of WK0205 W-E strips 

 
 

0σ RMS[m] RMS/GSDNo. of 
GCPs 

No. of
CKPs [µm] XY Z XY Z 

0 29 3.3 0.596 0.332 1.7 0.9

1A 28 3.3 0.382 0.326 1.1 0.9

1B 28 3.3 0.483 0.345 1.4 1.0
2A 27 3.3 0.359 0.273 1.0 0.8
3A 26 3.3 0.357 0.260 1.0 0.7
4A 25 3.3 0.374 0.211 1.1 0.6

4A + 1B 24 3.3 0.368 0.194 1.0 0.6
 

Table 2. Triangulation results of WK0409 W-E strips 
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In above two tests, about 1 pixel accuracy in both horizontal 
and height directions can be obtained, which proves that the 
triangulation approach based on unit quaternion proposed in 
this paper is correct and effective. Checking into the 
experimental results we can see that block adjustment without 
ground control points can not improve the positioning accuracy 
of EO parameters in object space, if GPS/IMU data are 
introduced as weighted observations. Figure 2 and 3 illustrate 
the positioning residuals on check points, in which obvious 
systematic effects are existed. It shows that the error of the 
orientation data provided by GPS/IMU equipment is systematic. 
Therefore, a few ground control points are needed to make the 
best of GPS/IMU data. 
 
On the condition that only one ground control point is used, the 
positioning accuracy on checking points will be significantly 
improved. As can be seen, the horizontal and height accuracy of 
the two experimental data sets is better than 1.4 GSD, which is 
much closed to the best result. Meanwhile, when only one 
control point is used to control the orientation of the block, the 
point locating at the centre is more effective than that on the 
corners. Furthermore, when three ground control points 
distributed on different corners of the block are taken into 
triangulation, the systematic error of GPS/IMU can be 
thoroughly compensated. The horizontal positioning error is 
about 1 ground pixel, while the height positioning accuracy is 
better that 1.1 ground pixels. However, more control points are 
not responsible for more favourable accuracy. 
 
From the above points, it can be seen that the auxiliary position 
and attitude data provided by GPS/IMU system is of great inner 
precision; as a result the amount of control points required by 
GPS/IMU supported aerial triangulation can be significantly 
reduced. Generally speaking, if there is a ground control point 
located in each corner of the survey area, ideal adjustment 
result can be obtained and both the horizontal and vertical 
positioning error on checking points is about 1GSD. 
 
 

 
 

Figure 2. Horizontal errors of triangulation without GCP 
 
5.3 Experimental Results of the Block with Cross Strips 

In the GPS supported aerial triangulation, in order to determine 
the drift parameters of GPS system with high degree of 
accuracy, two rows of height control points or two cross strips 
at each end of the block are needed (Yuan, 2001). However, 
thanks to the introduction of inertial measurement unit (IMU), 
the performance and reliability of GPS/IMU systems is 
enormously improved. Therefore, in GPS/IMU supported 
triangulation we are more concerned with the necessity or the 
positioning accuracy improved by cross strips. So, in this paper, 

all image strips of these two ADS40 datasets are selected for 
adjustment, corresponding experimental results are listed in 
table 3 and table 4. 
 
 

 
 

Figure 3. Height errors of triangulation without GCP 
 

 
0σ RMS[m] RMS/GSDNo. of 

GCPs 
No. of
CKPs [µm] XY Z XY Z 

0 30 3.7 0.367 1.034 1.7 4.9
1A 29 3.7 0.240 0.212 1.2 1.0
1B 29 3.7 0.250 0.238 1.2 1.1
2A 28 3.7 0.206 0.243 1.0 1.2
3A 27 3.7 0.196 0.228 0.9 1.1
4A 26 3.7 0.195 0.219 0.9 1.0

4A + 1B 25 3.7 0.194 0.221 0.9 1.0
 

Table 3. Triangulation results of all WK0205 strips 
 
 

0σ RMS[m] RMS/GSDNo. of 
GCPs 

No. of
CKPs [µm] XY Z XY Z 

0 29 3.3 0.593 0.196 1.7 0.6
1A 28 3.3 0.372 0.235 1.1 0.7
1B 28 3.3 0.415 0.310 1.2 0.9
2A 27 3.3 0.361 0.370 1.0 1.0
3A 26 3.3 0.338 0.276 1.0 0.8
4A 25 3.3 0.349 0.222 1.0 0.6

4A + 1B 24 3.3 0.343 0.222 1.0 0.6
 
Table 4. Triangulation results of all WK0409 strips 

 
Comparing table 3, 4 with table 1, 2 respectively, we find that 
when no ground control points are used, because of the 
significant systematic error of the GPS/IMU observations of 
cross strips, the effect of block adjustment is limited and the 
positioning accuracy on check points is equivalent to that of 
direct georeferencing, If there are few control points (less than 
three) participate in triangulation, block adjustment with 
additional cross strips can improve the positioning accuracy of 
GPS/IMU data to a small extent, which is less than 0.2 GSD 
both in horizontal and height directions. Meanwhile, if the 
strength of ground control exceeds that locating three control 
points at different corners of the block, only about 0.1 GSD 
improvement of accuracy can be obtained when cross strips are 
involved into triangulation, which is not of essential difference 
comparing to above results. 
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Therefore, considering such factors as flight costs and the 
workload of data storage and post-processing, cross strips are 
not cost-effective and are not necessary to be adopted in 
practical applications. 

 
 

6. CONCLUSIONS 

In this paper, quaternion is introduced into the block adjustment 
with orientation image method of three-line images. The 
collinearity equations expressed by unit quaternion are derived, 
and then corresponding error equations of image point 
coordinates observations are deduced in detail. Experimental 
results show that the Slerp based block adjustment with 
orientation image method is an ideal technique for the aerial 
triangulation of three-line images. It not only enables desired 
positioning precision, which is about 1 GSD in both horizontal 
and height directions, but also effectively avoids the limitations 
existing in attitude interpolation  by Euler Angles. Therefore it 
is of great potential in such practical projects as the block 
adjustment of three-line images and the calibration of GPS/IMU 
systems. 
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