
UNIVERSAL ERROR PROPAGATION LAW 
 
 

Xiaoyong CHEN a and Shunji MURAI b 

 
a Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand - xychen@ait.ac.th 

b IIS, University of Tokyo, 4-6-1. Komaba, Meguro-ku, Tokyo 153-8505, Japan – shi939murai@nifty.com 
 

Commission II, SS-15 
 

 
KEY WORDS:  Accuracy, Analysis, Modelling, Spatial Information Science, Statistics 
 
 
ABSTRACT: 
 
As an ubiquitous statistical theory, Gaussian Distribution (GD) or Gaussian Error Propagation Law (GEPL) has been widely used for 
modelling random errors in many engineering and application fields since 1809. In recent years, this theory has been extended to 
handle the uncertainties of spatial data in GIS, such as positional error modelling. But most of the results for spatial error modelling 
based on GD are contradictory with common senses and natural laws, such as energy law and Tobler’s First Law (TFL) in geography. 
This paper presents a novel statistical approach for rigorous modelling of positional errors of geometric features in spatial databases. 
Based on Generalized Gaussian Distribution (GGD) and using errors in local points as the fundamental building blocks, a new spatial 
statistical theory – Universal Error Propagation Law (UEPL) is presented to handle global error propagations for spatial random sets 
(or objects).  Practical examples and simulations are given to illustrate the error propagations based on UEPL for various spatial 
objects. Finally, the relationships between UEPL and Newtown’s Universal Gravitation Law (NUGL) and TFL have been 
successfully established, which shows that UEPL is a new discovered natural law for spatial information field. 
 
 

1. INTRODUCTION 

As one of the three most important emerging and evolving 
fields along with nanotechnology and biotechnology in this 
century (Gewin, 2004, Nature), Geo-spatial Information System 
(GIS)  plays increasingly important roles in decision-making 
processes in many disciplines that involve planning, research 
and management by using spatial data at the different spatial 
levels. However, more effective use of GIS requires explicit 
knowledge of the uncertainty inherent in the spatial data. 
Therefore, the quality of GIS application is strongly dependent 
on the quality of spatial data which needs a formal theory for 
handling spatial errors in GISs (Goodchild, 1989).  
  
De Morgan (1838) asked, “what do we mean by a law of 
error?” in Essay on Probabilities and went on to describe "the 
standard law of facility of error". This law had been used by 
Gauss (1809) in his first theory of least squares and is called 
Gaussian Distribution (GD) or Gaussian Error Propagation Law 
(GEPL) today. As in many other fields of science, GD has 
played a predominant role in surveying data processing and 
error modelling (Mikhail and Ackermann, 1976). In the vast 
majority of these applications, it has been assumed that the 
point-based observation error under investigation is distributed 
with GD. This popularity of the Gaussian assumption has been 
motivated mainly by the theoretical appeal of GD due to the 
central limit theorem and equally by the desirable analytical 
properties of Gaussian Probability Density Function (PDF) 
which generally leads to linear equations. A Gaussian PDF is 
also the maximum-entropy density (Papoulis, 1991) when only 
the first two moments of a process are known. 
 
In a vector-based GIS, spatial features are defended on the basis 
of point features, e.g. a line is defined as a sequence of digitized 
points connected by line segments, and a polygon is defined as 
the interior of its boundary delimited by a closed line. Then, the 
positional uncertainty of points should form the basis for 

uncertainty analysis of all spatial objects. From this point of 
view, GD and GEPL have been extended  for modelling spatial 
 
 

 
 

Figure 1. Different uncertainty models. 
 
errors in GIS, such as ε-band model (Chrisman, 1982), error-
band model (Shi, 1994), and generalized ε-band model (Leung 
and Yan, 1998) [Figure 1 (a)-(c)] and etc. In the same way, the 
spatial features in an image database are defended based on the 
pixels. Error propagation among the neighbouring pixels plays 
an important role for analyzing image accuracies. As the 
example illustrated in Figure 1 (d), the center point  of 
a round-target can be estimated by its boundary pixels as 

 and . Then, its positional accuracies 
can be estimated by  and  based on 
GEPL, where  and  are the standard deviations of a pixel 
in x and y directions.  
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However, a large class of errors encountered in many real-world 
problems can be characterized as non-Gaussian and frequently 
as the distributions with heavy tails. It is a common experience 
that conventional least-squares estimation techniques based on 
GD perform very poorly in removing these real-world errors. 
Similarly, spatial data are always autocorrelated and dependent 
on each other (Cressie, 1993). Modeling spatial errors based on 
GD/GEPL always cause the contradictions with common senses 
and natural laws, such as energy law and Tobler’s First Law 
(TFL) in geography (Tobler, 1970). For example, in the error-
band model shown in Figure 1 (b), the accuracy of a distant 
point is always higher than the accuracy of a starting control-
point. Likewise, in Figure 1 (d), when n is becoming very large,  

 and  will be extremely small. This is far below the 
limitation of empirical tests.  
 
In the past, various models for processing spatial errors have 
been developed from both local and global levels. In the local 
level, Robust Estimation has been developed based on non-
Gaussian error distributions (Huber, 1981; Hampel and et al, 
1986), in which the distant (or spatial) errors are treated as the 
outliers that are going to be eliminated from the final estimation 
result. In the global level, Geo-statistics has been developed by 
Matheron (1963), in which spatial errors are presented as 
stationary random processes. The kriging methods have also 
been used for handling spatial autocorrelations in Geo-statistics 
(Cressie, 1993).  
 
The objective of this paper is to develop a novel statistical 
approach to rigorously model the positional errors of geometric 
features in various spatial databases. Based on Generalized 
Gaussian Distribution (GGD) and using errors in local points as 
the fundamental building blocks, a new spatial statistical theory 
–Universal Error Propagation Law (UEPL) is presented to 
handle global error propagations for spatial random sets (or 
objects).   
 
 

2. GENERALIZED GAUSSIAN DISTRIBUTION 

2.1 Probability Distribution Function of GGD 

A random variable is distributed as Generalized Gaussian 
Distribution if its PDF is given by (Müller, 1993) 
 
 

 
 
 
where Γ( ) is the gamma function, µ is the mean,  is the 
variance,   is a scaling factor, and 
p is a positive shape parameter that describes the overall 
structure of GGD. With p=2, GGD reduces to a standard GD, 
with p=1 to a Laplacian distribution. Whereas in the limiting 
case p →+∞, GGD converges to a uniform distribution in 

, and when p → 0+ to a degenerate one in 
. When ,  and , GGD is classified into 

super-GD, GD and sub-GD respectively. The notation 
 donates that x is a random variable with PDF 

as in Equation (1), and . 
 
2.2 Parameter Estimation of GGD 

The Maximum Likelihood (ML) estimation based on GGD is 
equivalent to -norm estimation (Müller, 1993), i.e. 

. Let   be a random 
vector with , the ML estimated parameters  ,  
and  can be derived as  
 
 

 
 
 

 
 

Figure 2. GGDs: a) PDFs; b) Sub and Super Gaussians. 
 
 

 
 
 

 
 

 
 
 
where , is the digamma function.  
 
Kuruoglu and et al (1998) have proven that the estimated 
parameter  is the mean when  and the median when 

. To get the solutions of Equation (2)-(4), they have 
also suggested an efficient way called Iteratively Reweighted 
Least-squares Algorithm (IRLA), which starts from the well-
known least-squares solution and at each iteration solves a new 
least-squares problem by employing the weighted residuals 
from the previous iteration.  
 
Another good initial guess for the shape parameter p can be 
found based on the matching moments of the data set with those 
of the assumed distribution (Sharifi and Leon-Garcia, 1995). 
Letting  and  which denote 
absolute moments, p is estimated by 
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where 
 

 
 
 

3. UNIVERSAL ERROR PROPAGATION LAW 

3.1 Different Random Data Sets  

Generally, there are four types of common-used random data 
sets: random variable, random process, random field, and 
random set (Figure 3).  Their key characteristics are briefly 
summarized as follows: 
• A random variable is the mapping of the elements of a 

sampling space onto a set of numerical values. It is the basis 
for all point-based statistical analyses, and has been widely 
used for modelling random errors in classical probability 
theories and for handling both random errors and outliers in 
Robust Estimations.  

• A random process is the mapping of the elements of a 
sampling space to a space of continuous functions of time t, 
where t is a distinct variable. It has been mainly used for 
time series analysis according to autocorrelation functions 
in different times.  

• A random field is the simple extension of a random process 
from one-dimensional t to two-dimensional x and y, where 
distances  and  are still treated as distinct parameters 
even though both x and y are random variables. Geo-
statistics is based on this random data type (Cressie, 1993).  

• A random set (or object) is the mapping of a confidential 
region for an estimated parameter. Consider the family of 
all sets of interesting (usually closed sets). Equip it with an 
σ-algebra and then define a random set as a measurable map 
from a given probability space to this space of sets.  It is the 
most generalized random data type that we would like to 
use for modelling spatial errors in this paper. 

 
3.2 Relativity of Spatial Probability Distribution 

A random set is generally complicated. In a spatial random set, 
the probability distributions at different points may be heavily 
overlapped with each other or dramatically changed place to 
place. Up to the knowledge of the first two moments (  and ) 
and the shape parameter p, GGDs can be used for 
approximating the real PDFs at each point in the given random 
set. Because of the flexibility of GDD, it can adaptively account 
all types of errors, such as sub-Gaussian, Gaussian and super-
Gaussian. 
 
Let  be a set of positional random 
variables with , and Y be a linear function of 
X, i.e. .  It has been proven that Y is no 
longer a random variable of GGD except when  (Schilder, 
1970). This is because -norm estimation based on fractional 
lower order moments will inevitably introduce nonlinearity to 
even linear problems. The linear space of GGD is a Hilbert 
space when , a Banach space when , and only a 
metric space when .  Banach and metric spaces do 
not have as nice properties and structures as Hilbert spaces for 
linear estimation problems. Therefore, it is a serious problem to 
apply GGD for spatial error modeling.  

The key problem that needs to be solved is how to separate the 
spatial-independent local observations (i.e. without outliers) 
from spatial-mixed global observations (i.e. with outliers). 
Independent Component Analysis (ICA) in signal processing 
can be applied for this purpose (Choi and et al, 1998). In ICA, a 
weight function is adapted in such a way to make the output 
observations as spatially independent as possible. This can be 
achieved by composing a valid objective function that attains its 
extrema when the output observations become spatially 
independent. Both Infomax and ML approaches lead to the best 
separation nonlinearity as  
 
 

 
 
 
where  and  are the PDF and its derivative of the 
source signals . According to Equation (1), the nonlinearity is 
 
 

 
 

Figure 3. Different types of random data. 
 
 

 
 
where .  In the following deductions, it can 
be found that the solution of Equation (8) is equal to the -
norm estimation of Equation (2).  
 
Let  be a centralized observation, Equation (2) can 
be rewritten as 
 
 

                                 (9) 
 
 
The scale parameter  in Equation (8) is a constant for a 
single GGD like in Equation (9), so it can be omitted. Then, 
Equation (9) can be continually simplified to  , 
which is equivalent to a simple arithmetic mean derived by 
least-squares estimation.  
 
Up to the knowledge of the first two moments (  and ), the 
PDF of  can be approximately treated as a GD. It is 
because the PDF of  is close to a GD for a linear mixing 
of independent variables due to central limit theorem, the 
difference between maximizing the distance to the observation 
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or to a GD does not matter in practice (Lee and et al, 1997). In 
addition, if one assigns the first two moments of a PDF to agree 
with such information, but has no further information and 
therefore imposes no further constraints, then a GD fit to those 
moments will, according to the principle of Maximum Entropy, 
represent most honestly his/her state of knowledge about the 
error. Eventually, through the Gaussian-liked observation 

, GEPL can be conducted for modeling spatial errors. 
 
In summary, the PDF at each location in a spatial random set is 
relative depending on the different level of viewpoints. At the 
global level, the PDF of   is approximated to a GGD,  i.e. 

 , and at the local level, the PDF of  is 
approximated to a GD, i.e. . The relationship 
between  and  can be proven (the detail deductions are 
omitted due to the limited length of this paper) as 
 
 

 
 
 
3.3 Universal Error Propagation Law 

Let   be a random vector with 
  and  . The covariance 

matrix of 
 
 

 
 

Figure 4. A simulated random set. 
 

 is known as  
 

                             (11) 

 
 

Let  be a nonlinear function 
about X. Y can be approximately represented by its first-order 
Taylor series expansion about the approximate value of X at the 
point s, , as  
 
 

 
 

where .  Let  ,  
 and . Since both   and are not 

random vectors,  and  . From Equation 
(8), we have , where  is a weight matrix for 
handling the spatial dependences at the point s, and is defined as  
 
 

                          (13) 

 
 

in which each weight factor  is represented as 
 
 

 
 
 
According to GEPL, from the linear function , 
Universal Error Propagation Law (UEPL) can be derived as 
 
 

                        (15) 
 
 

3.4 Simulation 

 

 
 

Figure 5. The accuracy counter-lines derived by UEPL.  
 
In Figure 4-5, a Monte-Carlo simulation is accomplished to test 
UEPL for propagation of spatial errors, in which a triangle with 
equal side (d=5) is put in the centre, and 100 random variables 

 (i=1, 2, , n) are simulated at each vertex. For 
calculation of  at each vertex, the data set is divided into four 
zones according to the different directions, and then the data in 
each zone are processed as a one-dimensional profile according 
to the Euclidean distances. The final  can be estimated by the 
simple arithmetic mean of the four zone results. Due to the 
symmetry of the vertexes, their shape parameters are the same 
and estimated as .   
 
According to UPEL, the spatial accuracy  at each 
location can be estimated, and the derived accuracy counter-
lines are shown in Figure 5. Meanwhile,  can be also 
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derived by using Equation (3) and Equation (10) based on the 
direct-estimated shape parameter . For example, at the 
centre point of the triangle,  derived by UPEL is 0.982, and  
calculated based on  is 0.993. This can be used for 
checking the estimation quality of UPEL. 

 
 

4. SPATIAL ERROR MODELLING  

4.1 Vector Lines 

Examples of the error bands derived by vector lines based on 
UEPL (called as UEPL-bands) are shown in Figure 6. 
Comparing with ε-bands and error-bands, UEPL-bands can 
automatically adapt to the intervals of sampling points. When 
the interval is small, the UEPL-band becomes smooth and 
approximates to the true line. Inversely, when the interval is 
large, the UEPL-band becomes abrupt and wider.  
 
4.2 Vector Polygons 

There are two different ways to represent the error models for a 
vector polygon, i.e. boundary-model and area-model. A 
boundary-model is just the same as the error model of a closed 
boundary line [figure 7(a)]. But an area-model is the error 
propagation for the whole polygon [figure 7(b)].  Generally, the 
weight centre of a polygon is recognized as the position with the 
highest accuracy, and the gradient of the error propagation 
should be different comparing with the inside and the outside of 
a polygon. If p  is the shape parameter for the 
outside of a polygon, then   can be selected as the 
shape parameter for the inside of the same polygon.  
 
4.3 Relativity of Distance  

When the additional information is given, the results of spatial 
error propagations based on UEPL can be adjusted according to 
the determined relative distances. In this case, Equation (14) can 
be adapted to 
 
 

 
 
 

 
 

Figure 6. The different error models for vector lines.  
 

 
(a)                                        (b)  

 
Figure 7. The error models for a polygon.  

 
where k is the constant for adjusting the real distances. The 
example is shown in Figure 8: (a) is the result based on the real 
sampling points; (b) is the result derived by the compressed 
points; (c) is the result of the adjusted relative distances. 
 
 

 
(a)                          (b)                        (c) 

 
Figure 8. The relative error models for vector lines. 

 
4.4 Raster Objects 

According to UEPL, the accuracy of the centre point  
of a round-target in Figure 1 (d) can be estimated as 
 
 

 
 
 
where  is the standard deviation of a pixel, r is the radius of 
the round-target,  is the number of boundary pixels, and 
p is the shape parameter of each boundary-pixel. For example,  

; 
; 

 and  
. In summary, the 

accuracy can be achieved to , which is very 
close to the results of the empirical experiments.  
 
  

5. THEORATICAL ANALYSIS 

5.1 Comparing with GEPL 

When  (i=1, 2, , n), Equation (11) is simplified to 
, which shows that UEPL is a natural extension of 

GEPL for modeling spatial errors. Figure 9 shows the universal 
error propagations for the different shape parameters: (1) when 

, UEPL is  the  extrapolation of  the spatial errors  far 
outside the data group; (2) when , UEPL is the 
interpolation of the spatial errors among the sampling points 
within the data group; (3) when , UEPL is the same as 
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GEPL for estimation of the local errors only; (4) when , 
UEPL is the inverse extrapolation of the spatial errors inside the 
spatial objects, such as polygons. 
   
 

 
 

Figure 9. Universal error propagations with different p.  
 
5.2 Comparing with Newton’s Universal Gravitation Law 

Let  be the scale function of p, and  be the 
distance between the objects A and B. Since the mass of A is 
equal to the mass of B, i.e. , 
Equation (14), when  , can be changed to 
 
 

 
 
 
which shows that the spatial-dependent factor w in UEPL is just 
the same as Newton’s Universal Gravitation Law (NUGL) 
(Obanian and Ruffini, 1994), i.e.  w can be treated as a type of 
gravity in the information field. Here, the reason why the shape 
parameter  is because the two PDFs of the objects A and B 
are overlapped in their tails. Generally, there are four different 
cases for the shape parameters: (1) when  (i.e. spatial data 
only), the two PDFs are completely separated, and Equation (18) 
is just the same as NUGL; (2) when  (i.e. mixed 
spatial and local data), the two PDFs are overlapped in different 
degrees; (3) when  (i.e. local data only), the difference 
between two PDFs is within ; (4) when , B is inside 
the object A, and since  may converge to infinite when r is 
extremely large, it may cause the special-affected areas which 
are just similar to the “black holes” in Cosmology (Obanian and 
Ruffini, 1994; Zwiebach, 2004). 
 
5.3 Mathematical Representation of TFL 

As Tobler’s First Law in geography mentioned, “Everything is 
related to everything else, but near things are more related than 
distant things” (Tobler,1970).  Unfortunately, this law is just an 
approximated description based on plain words, but it is not a 
rigorous mathematical representation. For example, it does not 
tell the people how to conceptualize nearness or which 
proximity measure to quantify relatedness. In this case, UEPL 
can be contributed to fill this gap. According to Mikhail and 
Ackermann (1976), a weight can be represented as . 
On the other hand, the Fisher’s information value I (Frieden, 
2004) can be represented as  

 
 
 
When  is a Gaussian PDF,   and . For 
the reason, we can define  as the measure of 
similarity of the Fisher’s information values between the points 
o and i with the distance .  From Equation (18), when  , 
we have 
 
 

 
 
 
which is a type of the mathematical representation of TFL.  By 
using Equation (20), the nearness defined in TFL can be 
represented by the distance function and the relatedness 
can be represented by the measure of similarity . Since 

, the spatial-dependence represented by TFL is always 
positive. When , UEPL generates the special-affected 
areas [such as the shading areas in Figure 5 and 7(b)], which are 
always surrounded by the concave boundaries. According to 
String theory (Zwiebach, 2004), these areas represent a new 
type of space structures which may generate “black holes” 
(Obanian and Ruffini, 1994). 
 
 

6. CONCLOSION  

We have proposed in this paper a new spatial statistics theory – 
Universal Error Propagation Law to handle errors for spatial 
random sets (or objects). The specific contributions are: 
 
• Based on Generalized Gaussian Distribution, UEPL has 

been presented for modelling spatial errors;  
• By using Monte-Carlo simulation, the efficiency and quality 

of error processing based on UEPL has been evaluated; 
• According to UEPL, practical examples are given for 

generating the error models for different spatial objects. 
Comparing with the exiting error models, such as ε-band 
model and error-band model, our approach put the end to 
the long discussions about spatial data uncertainty in GIS. 
This means that without considering spatial dependences 
rigorously, no method can get the accurate estimation result 
for modelling spatial errors.   

• The relationships between UEPL and NUGL/TFL show that 
UEPL is a new discovered natural law for spatial 
information field.  

 
Our future works will be concentred on two major directions: (1) 
in the theoretical aspect, we will extend UEPL to high-
dimensional spatial and spatial-temporal data sets; (2) in the 
application aspect, we will use UEPL to establish various 
simplified and hierarchical error models for processing real-
world spatial errors.   
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