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ABSTRACT: 
 
Topological relations have found applications in many fields such as similarity analysis, spatial query, object matching, inconsistency 
detection, spatial association rule mining, spatial reasoning, and so on.  This paper is concentrated on the hierarchical representation 
of the topological relations between a line and a region in IR2.  In this study, line-region relations are classified into basic relations 
and compound relations based on the number of intersections between line and region boundary.  The basic relations are further 
differentiated into 16 types based on the invariants of dimension and local order.  These basic relations are then organized into a 
hierarchy with multiple levels of topological invariants.  These invariants are developed from the point of view of set theory, 
including (a) separation number and dimension at set level, (b) intersection type at element level, and (c) sequence of intersection 
types at an integrated level.  A practical example is provided to illustrate the use of the hierarchical approach presented in this paper. 
 
 

1.  INTRODUCTION 

Topological relations have been extensively applied to scene 
similarity analysis in multi-scale representation (Egenhofer and 
Clementini, 1994), representation of natural-language relations 
in spatial query (Clementini et al., 1994; Xu, 2007), object 
matching in multi-sources spatial data integration (Zhang and 
Meng, 2007), inconsistency detection in map updating (Chen et 
al., 2008), cartographic quality assessment in generalization 
(Steiniger and Weibel, 2005), spatial association rules mining in 
spatial data mining and knowledge discovery (Clementini and 
Di Felice, 2000; Miller and Han, 2001) and spatial reasoning in 
artificial intelligence (Sharma, 1996). 
 
According to the dimension of spatial objects in a planar space, 
six types of spatial configurations can be distinguished, 
including point-point, point-line, point-region, line-line, line- 
region and region-region.  As the configurations involving 
point objects (i.e. point-point, point-line and point-region) are 
relatively simple, the corresponding relations are also simple.  
As a consequence, attention has been paid mainly to the cases 
involving lines or regions. 
 
A number of general models have been developed to describe 
the topological relations, the 4-intersection model (4IM) by 
Egenhofer and Franzosa (1991), the 9-intersection model (9IM) 
by Egenhofer and Herring (1991), the Voronoi-based 
9-intersection model (V9I) by Chen et al., 2001), the dimension 
extended model (DEM) by Clementini et al. (1993), the 
calculus-based model (CBM) by Clementini and Di Felice 
(1994) and their combinations (e.g. the dimension extended 
4-intersection model -- DE-4IM). 
 

 
 

Table 1.  Comparison of various description methods 

Through the analysis of literature, it can be found that that the 
numbers of topological relations differentiated by these models 
can only indicate the capacities of the models but nothing about 
a complete spectrum of all possible topological relations.  For 
example, there should be infinite number of topological 
relations for a line and a region.  To overcome the deficiency 
of these general models, efforts have also been made to develop 
dedicated models to specific types of features, e.g. line-line 
relations (e.g. Clementini and Di Felice, 1998; Li and Deng, 
2006) and region-region relations (e.g. Egenhofer and Franzosa, 
1995; Deng et al., 2007).  However, not much work has been 
done for line-region relations.  Indeed, this paper is devoted to 
the topological relations between a line and a region in a 
two-dimensional vector space (IR2). 
The remainder of this paper is structured as follows: Section 2 
describes a new strategy (i.e. decomposition and combination) 
on the hierarchical representation of line-region topological 
relations.  By decomposition, a set of basic relations can be 
obtained for a complex line-region relation.  Section 3 
discusses the representation of basic relations in a hierarchy.  
The combination of basic relations into compound relation and 
its hierarchical representation are further discussed in Section 4.  
A practical example is provided in Section 5.  Section 6 
summarizes the major findings and proposes the future work. 
 

2.  A STRATEGY FOR HIERARCHICAL 
REPRESENTATION OF LINE-REGION TOPOLOGICAL 

RELATIONS 
A line-region topological relation may be very simple (e.g. 
Figure 1a), also being very complex (e.g. Figure 1b).  As a 
result it is difficult to find a simple model to completely 
describe all the topological details between a line and a region 
in IR2. 
 A
 
 
 
 
 
Figure 1.  Two cases of topological relations between a line 
and a region, (a) a simple case with one intersection and (b) a 
complex case with six intersections 
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With a hierarchical approach, all the possible topological 
relations for a line and a region are first of all divided into two 
levels, i.e. basic and compound relations.  A basic relation is 
referred as that with the number of intersections being less than 
or equal to one, i.e. disjoint or single-intersection relation.  A 
compound relation is referred as that with the number of 
intersections being larger than one, also called multi- 
intersection relation.  Therefore, a compound topological 
relation can be decomposed into and described by a 
combination of a finite number of basic relations.  In other 
words, a joint line-region topological relation can be described 
by an ordered set of finite number of basic relation(s).  In 
Figure 1(b), for instance, the topological relations between A 
and B can be decomposed into six basic relations. 
 
These basic relations could then be represented in a hierarchical 
approach.  Such a hierarchical representation will be discussed 
in next section.  By hierarchy, it means that different levels of 
invariants are employed for the identification of line-region 
relations with different topological details.  The hierarchical 
representation serves as a base for the representation of 
compound relations, which will be discussed in Section 4. 
 
 

3. REPRESENTATION OF BASIC LINE-REGION 
RELATIONS IN A HIERARCHY 

In this section, basic relations between a line and a region are 
represented at two levels, i.e. coarse level and detailed level, so 
they are also called coarse and detailed representations. 
 
3.1 A Coarse Representation from the Point of View of 
Human Spatial Cognition 
 
At the coarse level, basic relations may be roughly classified 
into six kinds, namely, disjoint, meet, cross, covered-by, 
contained-by and on-boundary, as shown in Figure 2.  These 
six kinds of relations can be organized into a hierarchy from the 
point of view of human spatial cognition. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Six kinds of topological relations between a line and 
a region at the coarse level, (a) disjoint, (b) meet, (c) cross, (d) 
covered-by, (e) on-boundary, and (f) contained-by 
 
For a line (A) and a region (B), the first concern for their 
relations is whether or not there is a connection (or linkage) 
between them.  This can be clarified by the intersection 
between A and B’s boundary (i.e. A∩∂B).  If the line A is 
connected with the region B, the next concern is whether or not 
the line belongs to the region.  In this case, the difference 
operation (i.e. A−B) can be used to answer such a question.  If 
the line does belong to the region, it can be further differentiated 
as on-boundary and covered-by by means of the intersection 
operation between A and the B’s interior (i.e. A∩Bo). Otherwise 
it must be either meet or cross which can also be differentiated 
by A∩Bo. A hierarchical decision process is shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Hierarchical decision tree of topological relations 
between a line and a region 
 
3.2 A Detailed Representation by Invariants of Dimension 
and Local Order 
 
Through an analysis, one can find that the three kinds of 
topological relations (i.e. meet, cross, and covered-by) can be 
further differentiated by the invariants of dimension and local 
order.  For instance, meet relation can be distinguished into 0- 
and 1-D cases by dimension invariant.  Further, 16 basic 
relations can be identified at the detailed level, as shown in 
column 2 of Figure 4. 
 
The meet, cross and covered-by have several cases respectively.  
First, meet can be classified into two groups in terms of 
dimension, namely, (I) 0-D meet: end-meet and mid-meet; (II) 
1-D meet: head-meet, belly-meet, and tail-meet.  And then, the 
local order of intersection point is used.  Specifically speaking, 
the local order of an intersection point pi, denoted by Lo(pi), can 
be defined to be the order of the intersecting lines within a very 
small circle centered at pi.  This small circle is equivalent to 
the concept of neighborhood, and therefore the local order is 
also an invariant.  In this way, the local order of pb in Figure 
4(b) is Lo(pb) = <B; A; B>, and that of pc in Figure 4(c) can be 
represented as Lo(pc) = <B; A; A; B>.  The three types of 1-D 
meet (i.e. Figures 4(d), (e) and (f)) can be also differentiated by 
local order.  Similarly, cross can be subdivided into 
point-cross, in-cross and out-cross, and covered-by into 
head-meet-covered-by (HM-covered-by), tail-meet-covered-by 
(TM-covered-by), belly-meet-covered-by (BM-covered-by), 
end-meet-covered-by (EM-covered-by) and mid-meet-covered- 
by (MT-covered-by), as shown in Figure 4. 

A B A B AB

B A B 

(a) (b) (c)

 
Further, 13 of these sixteen relations together form a basis for 
combinational description of a compound relation, with the 
exception of disjoint, on-boundary and contained-by.  The 13 
basic relations are thus termed as compoundable relations. 
 
 
 
 
 
 
 

AB A 

(d) (e) (f)
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Figure 4.  Sixteen basic line-region topological relations and 
their differentiations 
 
3.3  A Conceptual Neighborhood Graph of Basic Relations 
at Two Levels 
 
From Figure 4 it can be noted that some basic relations are more 
closely related than others.  For example, disjoint relation will 
possibly first be transformed into meet or on-boundary relations 
by moving the line or both line and region.  Then other basic 
relations like cross and covered-by may be obtained by further 
moving the line or both line and region.  The closeness of 
these basic relations can be arranged into a graph, called 
conceptual neighborhood graph here, as shown in Figure 5.  In 
Figure 5(a), the neighborhood graph of six kinds of basic 
relations at the coarse level is represented, and a comprehensive 
neighborhood graph of all 16 basic relations at the detailed level 
can be obtained by combining Figure 5(a) with Figures 5(b), (c) 
and (d).  From this neighborhood graph, one can see clearly a 
transformation order among these basic relations, which is very 
useful to predict the most likely relations at the next moment in 
spatio-temporal reasoning (Egenhofer and Al-Taha, 1992) and 
similarity assessment in multiple representations (Egenhofer 
and Clementini, 1994). 

 
 
Figure 5.  A comprehensive conceptual neighborhood graph of 
basic topological relations, where (a) the neighborhood graph of 
six kinds of relations at the coarse level, (b), (c) and (d) 
corresponding to the neighborhood graphs of meet, cross and 
covered-by relations, respectively. 
 
 
4. REPRESENTATION OF COMPOUND LINE-REGION 

RELATIONS IN A HIERARCHY 
 
4.1  A Categorization of Compound Relations 
 
As mentioned in Section 2, a compound line-region relation is 
such a relation that the number of intersections between the line 
and the region boundary is larger than one.  A compound 
relation can be formed with a combination of two or more basic 
relations, more precisely compoundable basic relations.  
According to its compositions, three kinds of compound 
line-region relations are differentiated as follows: 

 Compound meet relation: composed of meet relations 
only. 

 Compound covered-by relation: composed of covered-by 
relations only. 

 Compound cross relation: composed of cross and 
possible compoundable relations. 

From above categorization, four algebraic operations among 
these three kinds of compound relations can be defined as 
follows: 

(i)  meet + meet = meet 
(ii) covered-by + covered-by = covered-by 
(iii) cross + cross = cross 
(iv) cross + other = cross 
 

Therefore, these three kinds of compound relations can be 
regarded as the extensions of corresponding basic relations.  
Combined with the categorization of basic relations at the 
coarse level, all the line-region topological relations in IR2 may 
be uniformly classified into six kinds, including disjoint, meet, 
on-boundary, cross, covered-by and contained-by. 
 
4.2 Hierarchy of Topological Invariants Based upon Set 
Theory 
 
It can be noted here that a compound relation is determined by 
the number and type of intersections between the line and the 
region boundary.  A compound relation can be considered as 
an ordered set with its elements being basic relations.   
 
For a set, three levels of topological information can be defined, 
namely, set level, element level, and an integrated level (with 
consideration of the information at both the set level and the 
element level).   
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 At the set level, the dimension and separation number of 
the intersections between the line and the region 
boundary (abbreviated as LRBIS) are utilized;  

 At the element level, type of intersection in the LRBIS is 
considered, and 

 At the integrated level, a sequence of intersection types 
is defined. 

 
Indeed, the measures at these three levels are topological 
invariants.  In the following, these three invariants are 
respectively utilized to differentiate line-region topological 
relations with different levels of details. 
 
4.2.1   Separation Number and Dimension of the LRBIS at 
the Set Level:   Separation number can be measured by the 
number of parts of a line separated by the intersections (with 
region boundary).  For example, the separation number of the 
LRBIS in Figure 6 is equal to 1 in (a), 2 in (b), (c) and (d), 
respectively.  In other words, the topological relation between 
A and B in Figure 6(a) is different from those in Figures 6(b), (c) 
and (d).  In practice, the separation number invariant can be 
used to answer such queries as “how many times does a line 
(e.g. a river) pass through a region (e.g. a city)”. 
 
The dimension of a set S, denoted by dim(S), may be defined as 
the maxima of the dimensions of its elements (Clementini and 
Di Felice, 1998), i.e. 

dim(S) = max{dim(s1), dim(s2), …, dim(sn)}        (1) 
By using Equation 1, the dimension of the LBRIS is 0 in Figures 
7(a) and (b), 1 in (c) and (d), respectively.  In practice, the 
dimension invariant may be used to answer such queries as 
“whether a line (e.g. a river) acts as the boundary of a region 
(e.g. a county)”. 
 
 
 
 
 
 
 
Figure 6.  Separation number and dimension of the intersection 
set between a line (A) and a region (B), where (a) A ∩ ∂B = {a1}, 
(b) A ∩ ∂B = {b1, b2}, (c) A ∩ ∂B = {c1, c2}, and (d) A ∩ ∂B = 
{d1, d2}. 
 
4.2.2   Intersection Type in the LRBIS at the Element 
Level:  Apparently, if one knows all types of intersections, one 
can derive the separation number and dimension.  The former 
is the number of all the intersections, and the latter can be 
obtained by Equation 1.  In Figure 6(c), for instance, two 
intersections (i.e. c1 and c2) belong to types (h) and (j) according 
to Figure 4, respectively.  Therefore, it is not difficult to 
compute and obtain the separation number and dimension as 2 
and 1.  However, the reverse is not applicable.  Figures 6(c) 
and (d) are such examples.  The relations between A and B in 
Figures 6(c) and (d) can be differentiated by the intersection 
type invariant.  As a result, intersection type at the element 
level can provide more topological details than the separation 
number and dimension at the set level.  It means that the 
description at the element level is deeper than that at the set 
level.  In practice, one can determine that a river passes 
through a city or that a river passes by the city according to the 
type of intersections between them. 
 
4.2.3   Sequence of Intersection Types in the LRBIS at the 
Integrated Level:  At the integrated level, individual 
intersection types and the orders which are defined by all 

intersection types in the LRBIS are considered together.  Here, 
the combination of them is called the sequence of intersection 
types.  Since the boundary of a region is a closed line, the 
sequence of intersection types in the LRBIS can be defined 
similar to those for line-line relations in the literature (Li and 
Deng, 2006).  It includes the orders of intersection types, of 
loop types, and/or linkage relations.  Figures 7 to 9 illustrate 
the needs of these individual orders.  Compared with the 
sequence of intersection types for line-line relations, the order 
of characteristic points is not included.  This is mainly because 
the interior and boundary of a region are differentiated in the 
representation of line-region relations. 
 

(a)

0
B

A

1 2 0 1
 
 2

B 

(b) 

 
 
 
 
Figure 7.  Need of the order of intersection types in the LRBIS 
to differentiate the compound line-region relations, where (a) 
Oet(A) = < 0(h), 1(j), 2(h) >, and (b) Oet(A) = < 0(j), 1(h), 2(h) 
 
 
 
 
 
 
 
 
 
Figure 8.  Need of the order of loop types for the compound 
line-region topological relations, where (a) Oet(A) = < 0(h), 2(h), 
1(h) >, Olt(A) = < ml, pl >, and (b) Oet(A) = < 0(h), 2(h), 1(h) >, 
Olt(A) = < pl, pl > 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Need of the order of linkage relations between 
consecutive loops for topological relations of spatial 
configurations, where (a) Oet(A) = < 0(h), 3(h), 2(h), 1(h) >, 
Olt(A) = < pl, pl, pl >, Olr(A) = < m, m >, and (b) Oet(A) = < 
0(h), 3(h), 2(h), 1(h) >, Olt(A) = < pl, pl, pl >, Olr(A) = < m, c> 
 
 
5. AN EXAMPLE FOR HIERARCHICAL ANALYSIS OF 

LINE-REGION TOPOLOGICAL RELATIONS 
 
As mentioned in the introduction, topological relations are very 
useful for spatial analysis, e.g. change detection, assessment of 
scene similarity, automatic detection of spatial inconsistency.  
Indeed, topological change indicates geometric modification of 
the involved spatial objects, but it is not true for vice versa.  
This section is devoted to illustrate the practical usefulness of 
the hierarchical approach for the description and determination 
of the topological relations between a line and a region by a 
case study of change detection. 
In this case study, two data layers (i.e. river and an 
administrative boundary layer) are selected.  Figure 10 (a) and 
(b) represent the local map of a river (as line A) and a county (as 

a1 
A 

B 

A 
b1 

b2 

A 
c1 

c2 

A
d1

d2
(a) (b) (c) (d)

A

0 B

A

1 2 0 
B 

 

1 2
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A

0 1 2 3
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region B) for a same area in 1998 and in 2003, respectively.  
One can find the changes in geometry of the river and the 
county, which may be caused by data uncertainty due to 
measurement error, acquisition means and/or cartographic scale, 
or caused by a real change of the location and shape of the river 
in reality with time.  Such a geometric change leads to changes 
in topological relations, which are marked by broken circles in 
Figure 10(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.  A practical example for hierarchical analysis of 
line-region topological relations in support of change detection 
 
At first, the topological relations between the river and the 
county can be determined by a hierarchical decision tree (in 
Figure 3) as compound cross in both (a) and (b), where line 
algorithm (e.g. intersection of lines) and polygon algorithm (e.g. 
point-in-polygon analysis) are involved in the intersection and 
difference operations.  However, such descriptions only 
indicates the river passing through the county but are not 
capable of telling the topological difference between (a) and (b), 
needless to say the topological inconsistency. 
 
At the set level, numbers of the intersections between the river 
and the county in Figures 10(a) and (b) are both four, labeled by 
numbers such as 0, 1, 2 and 3, respectively.  According to 
Equation (1), the dimension of LRBIS in (a) and (b) is both 
equal to one, indicating that part of the river acts as the 
boundary of the county.  In this case, there is still unable to 
detect topological change between (a) and (b) by a comparison 
of both separation number and dimension of the LRBIS. 
 
Further, at the element level, the four intersections (labeled by 0, 
1, 2 and 3) in the LRBIS correspond to types (h), (m), (o) and (j) 
in Figure 10(a), and types (h), (h), (h) and (j) in Figure 10(b).  
From the description results, the end user(s) can see that 
topological changes happen between the river and the county in 
2003 compared with their relation in 1998.  According to the 
types of the intersections in the LRBIS, the end user(s) also can 
know the times of the river passing through the county, as 
indicated by the numbers of basic cross relations (e.g. types (h), 
(j) in this example).  In Figure 10, for instance, the river passes 
through the county 2 times in (a), while four times in (b).  
 
The last is to utilize the sequence of intersection types to 
describe the topological relations between the river and the 
county, which are respectively represented as 
 

(a) Oet(A, B) = [ 0(h), 1(m), 2(o), 3(j) ], and 
(b) Oet(A, B) = [ 0(h), 1(h), 2(h), 3(j) ]. 
 

This information is very important to further deal with 
topological inconsistency.  On the one hand, the inconsistency 
can be detected by using the set of ordered intersection types.  
For instance, it can be determined that a part of the river is not 
in the county within some section according to the description 

result of (b), as may have contradiction with the reality.  Here 
the inconsistency is caused due to positional uncertainty of 
different sources of spatial data.  On the other hand, it can be 
used to resolve the inconsistency.  Taking displacement as 
example, the set of ordered intersection types can be used to 
determine the direction of displacement.  Indeed, one can 
displace parts of vertices of the river in between intersections 1 
and 2 into the county to remove these two intersections. 
 
 

(a) (b)

6.  CONCLUSIONS 
 
In this paper, a hierarchical approach is proposed for the 
topological relations between a line and a region in IR2.  The 
topological relations for a line and a region are classified into 
basic relations and compound relations.  Basic relations are 
further classified at two levels: coarse level and detailed level.  
Compound relations are classified at three levels: set level, 
element level and integrated level.  At each level, topological 
invariants are developed based on the intersections between line 
and region boundary.  With these invariants developed, 
compound line-region topological relations are differentiated to 
meet the needs of topological information at various levels.  A 
practical example is given for the illustration of the approach 
presented. 

 

B 
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This paper has the contributions in the following aspects:  

 Topological relations between a line and a region in IR2 
may be classified into six kinds at a coarse level, i.e. 
disjoint, meet, on-boundary, covered-by, contained-by and 
cross.  It is further classified into a total of sixteen basic 
relations at a detailed level, and thirteen of them form the 
basis of compound line-region relations. 

 Complexity of line-region topological relations is 
dependent upon the identification of the intersection set 
between a line and the boundary of a region.  

 Hierarchical topological invariants are developed based 
upon set theory, which are utilized to differentiate 
compound line-region relation in a hierarchy with 
different levels of topological details.  By hierarchy, only 
some of the invariants need to be computed to describe the 
topological relations which are required in practical 
applications. 

 The approach used in this study is directly based on the 
line objects themselves, instead of its topological 
components (a detailed comparison is listed in Table 1).  
Therefore, there is no such problem as the inadequacy of 
adopting the boundary definition in IR1 into IR2, as argued 
by Li et al. (2000). 

 
It has been mentioned in the example that spatial 
inconsistencies occur with a joint analysis of multi-sources 
and/or multi-temporal spatial data.  Such inconsistency is often 
embodied as the contradiction of multiple types of spatial 
relations, e.g. topological, directional, and distance.  Therefore, 
the next step of work is to develop an integrated approach to 
represent various spatial relations between spatial objects for an 
automated detection and resolution of spatial inconsistency 
between them. 
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