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ABSTRACT 

This  paper  presents  a prototype of  a  simulation model  based on cellular  automata  (CA),  and multi  criteria evaluation, 
integrated with Geographic Information System (GIS). Multi criteria evaluation procedure is used to derive behavior-oriented transition 
rules. The CA model is built within a grid-GIS system of ARC/INFO GIS using arc macro language to facilitate easy access to GIS 
databases for constructing the constraints. A suitability-based cellular automata model has been developed to simulate land use change 
dynamics through the concepts of ‘probability of happening of the dynamic phenomenon’ and ‘suitability of the land for the dynamic 
phenomenon’. Land degradation is the dynamic phenomenon that has been modeled in the present study. It can be used as a useful 
planning tool to test the effects of different land use change scenarios.

1. INTRODUCTION

Geographic Information Systems (GIS) provide rich 
spatial  databases  but  have  been  traditionally  static.  The 
coupling of dynamic models to GIS provides an insight to the 
evolution of spatial phenomena as discussed by Grossman and 
Eberhardt (1992). Differential equations and partial differential 
equations have been the mathematical tools of choice for most 
of  the  dynamic  models  that  have  been  developed.  Toffoli 
(1984)  and  Toffoli  and  Margolus  (1987)  proposed  cellular 
automata models to replace differential equation models. 

The theory of cellular automata was first introduced 
by John (1966). One of the best known and pioneering studies 
in this area was done by John et al. (1982), Gardener (1974), 
which emerged in Conway’s Game of life. While this work 
was  essentially  abstract,  it  demonstrated  that  the  repeated 
application of very simple rules to some random initial state 
could generate interesting, and recurring patterns as the state of 
the  system  evolved.  In  recent  years  they  have  been 
increasingly used in the simulation of complex systems such as 
biological  reproduction,  chemically  self-organizing  systems, 
propagation phenomenon, and human settlements. A series of 
urban  models  based  on  CA techniques  have  been  reported 
(Batty and Xie, 1994; White and Engelen, 1993; Wu 1998; Li 
and Yeh, 2001). There are numerous studies on the detection 
of land use change using remote sensing and GIS (Howarth 
1986, Jensen et al. 1995, Li and Yeh, 1998). However, there is 
a general lack of studies on the simulation of land use changes 
because of their complexities. Lo and Xiaojun  (2002) have 
studied the drivers of land use / land cover changes in Atlanta 
using remote sensing data and employed a process-based CA 
model to simulate the urban growth and landscape changes. Li 
and  Yeh  (2002)  presents  a  new  method  to  simulate  the 

evolution of  multiple  land uses  based  on the integration of 
neural networks and cellular automata using GIS.

Traditionally  GIS,  means  a  system  capable  of 
storing, manipulating, analyzing and displaying spatial data. It 
lacks the ability to model a dynamic phenomenon in spatial-
temporal domain. But it can act as a platform on which further 
modeling capabilities  can  be built.  In  the  present  study,  an 
attempt  has  been  made  to  enhance  the  spatial  modeling 
capability  of  a  GIS  to  address  spatial  dynamic  modeling 
problem,  through  Cellular  Automata  and  Multi-Criteria 
Evaluation procedures.  A suitability-based  cellular  automata 
model  has  been  developed,  which can evolve an  organized 
global pattern from locally defined behavior, because of the 
interaction  between  a  site  and  its  neighborhood.  State 
transitions  are  governed  by  transition  rules,  which  are 
universally  applied  and  are  defined  through  multi-criteria 
evaluation procedures. This can act as a generic framework, 
which can handle any kind of spatial dynamic phenomenon. 
The method has been tested and evaluated by modeling land 
degradation process.  

2. METHODOLOGY

2.1 Cellular Automata

A Cellular Automata system usually consists of four 
elements – cells, states, neighborhoods and rules. Cells are the 
smallest  units,  which  manifest  adjacency  or  proximity.  The 
state of a cell can change according to transition rules, which 
are  defined  in  terms  of  neighborhood  functions  and  other 
suitability criteria. CA are cell-based methods that can model 
two-dimensional space. Because of this underlying feature, it 
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 becomes easy to use CA to simulate land use change, urban 
development and other changes of geographical phenomena.

Most  current  GIS  techniques  have  limitations  in 
modeling  changes  in  the  landscape  over  time,  but  the 
integration  of  CA  and  GIS  has  demonstrated  considerable 
potential (Itami 1988, Deadman et al. 1993). The limitations of 
contemporary GIS include, its poor ability to handle dynamic 
spatial  models,  poor  performance  for  many operations,  and 
poor handling of the temporal dimension (Park and Wagner 
1997). In coupling GIS with CA, CA can serve as an analytical 
engine to provide a flexible framework for the programming 
and  running  of  dynamic  spatial  models.  Masanao  and 
Couclelis (1997) addresses a generalized modeling formalism 
of  CA,  which  is  extended  with  Geo-algebra  capable  of 
expressing  a  variety  of  dynamic  spatial  models  within  a 
common framework.

2.2 State-based Cellular Automata

In a standard CA model, the state is usually used as 
the main attribute to describe the development of a cell. Any 
cell  cannot  take  on  more  than  one  state  simultaneously, 
although the state can change from one to another in different 
periods. In land degradation simulation, the most general state 
for a cell is degraded or not degraded. The essence of CA is 
that the states of the neighboring cells influence the state of the 
central cell. The notion of neighborhood is central to the CA 
paradigm (Couclelis 1997), but the definition of neighborhood 
is rather relaxed. A simple model is to project the state of a 
central cell using a 3X3 window to count the distribution of 
states in its neighboring cells.  Land use classes were grouped 
into  three  categories:  degraded,  degradable  or  prone  to 
degradation and non-degradable, which becomes the state of a 
cell.

2.3 Suitability-based Cellular Automata

More  sophisticated CA systems have been further 
developed to simulate urban growth through the concepts of 
‘development  probability’  and  ‘development 
suitability’  (White  et  al.  1997).  This  kind  of  simulation 
assumes  a  relation  between  the  states  (developed  or  not), 
development probability and development suitability:
St+1

 {x,y} = f (Pt{x,y})
Pt{x,y} = f(DSt{x,y})
Where  S{x,y}  is  the  state  at  location  {x,y};  P{x,y}  is  the 
probability  of  transition  to  the  state  S  at  the  location;  and 
DS{x,y} is the suitability of conversion to the state S. f and f 
are  transition  functions.  Suitability-based  cellular  automata 
differs from state-based cellular automata, in which the state of 
a cell not only depends on the state of its neighborhood, but 
also checks for its degree of suitability (DS) for development, 
which in turn is based on a number of terrain-related factors. 

This logic has been extended in the present study to 
model land degradation dynamics. It is obvious that the CA 
simulation  heavily  depends  on  the  calculation of  suitability 
score based on neighborhood configuration. The suitability of 
a  cell  for  degradation  is  usually  evaluated  according  to 
location factors and site properties. The conversion criterion is 
that cells with high degree of suitability will be first selected 
for degradation. Much work has been done on the evaluation 

of  land  suitability,  which  usually  involves  multi  criteria 
evaluation techniques (Novaline et al., 2001).  

Land suitability, which describes the potential of a 
cell for a specific type of land use,  can act as an important 
constraint in the CA model. For example, we may allow faster 
land degradation in dry land area and more restricted or slower 
degradation in vegetated area. Therefore, suitability plays an 
important role in affecting the state or the transfer of the state 
of a cell in an idealized situation. Suitability scores should be 
re-computed in each iteration to achieve compatible land use. 
The  model  may  be  expressed  as  a  two-dimension  model, 
including states S(t) and suitability DS(t):
(St+1, DSt+1) = f (St, DSt, N)
where N, is the neighborhood providing input values for the 
transition function f.

2.3.1  Multi  Criteria  Evaluation  technique  for  Land 
Suitability analysis: Multi criteria decision-making (MCDM) 
problems involve a set of alternatives that are evaluated on the 
basis of a set of evaluation criteria.  The multi criteria decision 
analysis has recently received considerable attention in GIS. 
Combining  different  factors,  some  exclusionary  and  some 
expedient, requires a weighting factor. Alternate approaches to 
GIS-based  multi  criteria  analysis  have  been  suggested  to 
overcome  the  problem  of  weighting  and  data  integration. 
Analytic  Hierarchy  Process  (AHP) has  been  identified  as  a 
weighting  strategy  and  Compromise  Programming  (CP) 
technique has been identified for data integration (Novaline et 
al. 1996, Deekshatulu et. al. 1999). 

AHP is an approach that can be used to determine 
the relative importance of a set  of activities or criteria. The 
first  step of  the  AHP is  to  form a  hierarchy  of  objectives, 
criteria and all other elements involved in the problem.  Once 
the  hierarchical  structure  has  been  formed,  comparison 
matrices are to be developed.  These are evaluations made by 
the  decision-makers  on  the  intensity  of  difference  in 
importance, expressed as a rank number on a given numerical 
scale,  for  each  level  in  the  hierarchy.  From these  weights, 
priorities are determined.  An expert would be asked to make 
pair wise comparisons between two factors at a time, decide 
which factor  is  more important,  then specify the  degree  of 
importance on a scale between 1 and 9 in which 9 is most 
important.   These  evaluations  would  result  in  reciprocal 
matrices of the components of each level against the items in 
the level above.  Consistency of the matrix has to be checked 
and  eigen  value  of  the  matrix  has  to  be  found.   Upon 
normalization of the eigen vector corresponding to maximum 
eigen value, each factor coverage would have only one weight 
associated with it.

Another  important  problem  in  GIS  is  how  to 
efficiently  integrate  data  from  various  sources.   Weighted 
linear additive model is the one that is widely used for data 
integration and is done with the help of algebraic functions 
available  in  any  commercial  GIS  package.   In  this,  a  total 
compensation  between  criteria  is  assumed,  meaning  that  a 
decrease  of  one  unit  on  one  criterion  can  be  totally 
compensated by an equivalent gain on any other criteria.  Ideal 
Point Analysis,  a Compromise Programming technique,  is  a 
method to arrive at non-compensatory solution.  It measures 
the deviations from the ideal point in each data layer and a 
min-max rule is applied wherein minimum of the maximum 
weighted deviations are sought for getting a composite layer. 
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 The best compromise solution is defined as that which is at the 
minimum distance from the theoretical ideal.

Driver  variables  for  land  degradation  process 
include:  terrain-related  variables  like  drainageJ  slopeJ  soil 
textureJ dry land areaJ neighborhood agglomeration; climatic 
variables like rainfallJ aridity index; socio-economic variables 
like populationJ livestock and tube well density. Neighborhood 
agglomeration layer was derived by counting the number of 
degraded cellsJ within a circular neighborhood with radius of 5 
cells from each cell and assigning the sum to the center cell. 
IRS LISS III  data  was used to interpret  dry land areaJ  soil 
texture and drainage combined with ground truth. Slope was 
generated  from  the  contours  at  1:50J000  scale  toposheet. 
Aridity index was calculated from the meteorological data on 
temperatureJ  potential  evapo  transpiration  and  rainfall. 
Socioeconomic  data  on  populationJ  livestock  and  tube  well 
density were gathered from census data.

These driver variables acted as the land degradation 
criterion in  the  multi  criteria  evaluation procedure.  Each of 
them was given appropriate weight adopting AHP procedure. 
Weights given for driver variables 
Neighborhood Agglomeration : 100
Drainage  : 90
Soil Texture  : 80
Slope  : 70
Dry land area  : 65
Aridity Index  : 60
Rain fall  : 50
Population density  : 40
Livestock density  : 30
Tube well density  : 10

For  exampleJ  neighborhood  agglomeration  was 
given higher preferenceJ because in a cellular automata modelJ 
the  state  of  a  cell  would  depend  on  the  state  of  its 
neighborhood.  Next  preference  goes  to  terrain-related 
variables: drainageJ soil textureJ slope and dry land areaJ owing 
to their  obvious influence on land degradation;  followed by 
climatic variables: aridity indexJ rainfall and socio-economic 
variables: populationJ livestockJ tube well density. To derive 
the areas suitable or prone to degradation based on the said 
criteriaJ all the criterion maps were integrated adopting Ideal 
Point  AnalysisJ  a  Compromise  programming  technique. 
Suitability score DS is computed using the distance metric as 
below:
   
           n
  DS =  [    i

p (xi* - xik)p ]1/p                                         Equation (1)  

                i =1
    
where i is the map layerJ  is the criterion preference J xi* is 
the ideal point J xik  is the cell value in kth cell for ith parameter 
and p is the factor which leads to non-compromising solution. 
p can take values from 1 to infinity. Different  values for p 
were tried and p was set at 4 (Jose & LucienJ 1993). Climatic 
and socio-economic data were simulated every year using their 
growth rate value computed per year. And the land degradation 
suitability was recomputed every year.

2.4 Probability-based Cellular Automata

TraditionallyJ  CA  simulation  only  uses  a  binary 
value  to  address  the  status  of  conversion  based  on  the 
calculation  of  probability.  The  probability  of  conversion  is 
calculated  based  on  some  kind  of  neighborhood  function. 
UsuallyJ the  probability  is further  compared with a random 
value  to  decide  whether  a  cell  is  converted  or  not  (1  for 
converted and 0 for non-converted). In our modelJ the status of 
cell  has  a  continuous  suitability  value  between  0  and  1  to 
represent the stepwise selection or conversion process. A cell 
will not be suddenly selected or converted.

A stochastic disturbance term is added to represent 
unknown  errors  during  the  simulation.  This  can  allow  the 
generated patterns to be closer to reality. Suitability values are 
converted into probability values by introducing a stochastic 
disturbance parameter . Thus this rule defines the probability 
of  site  selection  in  terms  of  land  suitability.  Since  the 
neighborhood  is  used  in  evaluationJ  land  suitability  here  is 
dynamicJ  which  means  that  the  maximum  score  of  land 
suitability  is  changing  over  simulation  time.  While 
transforming  the  evaluation  score  into  development 
probabilityJ  one  can  use  the  maximum score  of  evaluation 
during  each  simulation  time  as  a  benchmark  because  it 
represents a relative availability at the time when the decision 
is made. The probability is defined in a nonlinear form to the 
evaluation score:

Pt
xy =   exp [ ((DSt

xy / DSt
max) - 1)] if DSt

xy  0  Equation (2)

0             if DSt
xy = 0

where  Pt
xy is  the  probability  of  land  conversion  from 

degradable to degraded land at the location xy at time t; DSt
xy 

is  the  land suitability  score  at  the  same location at  time t; 
DSt

max is  the  maximum  score  of  land  suitability  at  the 
simulation  time  t  of  calculation;  and   is  the  dispersion 
parameter to be input through the first  rule.  The higher the 
value of J the more stringent is the site selection process. The 
exponent function in the equation (2) makes  to behave in the 
required formJ likeJ if you decrease   probability increasesJ 
thereby introducing stochastic disturbance in the simulation. 
 See  for  exampleJ  how the probability  value changes  for  a 
suitability value of 0:

when  = 4 J  exp(-4)  = 0.018 
 when  = 1 J  exp(-1)  = 0.3678

when  = 10J exp(-10) = 0.000045 (which is almost 
equal to 0)
If DSt

xy = DSt
max = 1 J then   exp(0) = 1 

(i.e)  if  suitability  is  high  and  equals  1J  then 
probability = 1J irrespective of any value of 

ThereforeJ   can take a value between 0 and 10. The ( – 1) 
term in [((DSt

xy / DSt
max)    - 1)]J in the equation (2) makes the 

probability value range between 0 and 1.

Because of time limits and information barriersJ the best site is 
not always chosen. Less desirable sites still have a chance of 
being  degraded.  ThusJ  this  rule  introduces  stochastic 
disturbance  to  the  system.  Various  values  of   were  tried 
ranging between 1 and 10 and   was set at 4 in the present 
study  based  on  the  calibration  analysis.  A  flow  chart 
describing the methodology is shown in figure 1.
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3. RESULTS AND DISCUSSION

The CA model is built within a grid-GIS system of 
ARC/INFO GIS using arc macro language.  The model  was 
applied  on  parts  of  degradation-prone  district  in  Andhra 
Pradesh,  India  covering an area  of  6410  square  kilometers. 
Land degradation maps corresponding to the years 1989, 1997 
and 2002 were provided by National Remote Sensing Agency, 
India. 1989 data was used as the seed and 1997 data was used 
for calibration. 2002 data was used for validation (figure 2). 
Prediction of the land degradation process was done for the 
next 10 years till 2012 (figure 3).  Further prediction can also 
be done by appropriately predicting the growth rate of climatic 
and socio-economic variables that were used in the model. A 
simple formula for calculating growth rate is gt = ((xt / xt-n) –1) 
* 100, where gt is the growth rate in period t, x is the variable 
being examined and n is the time period of interest.

For each iteration (corresponding to one year), cells 
beyond certain probability are selected. The threshold value is 
learnt through the calibration process. During the calibration 
phase, the model was also tested with different values of  and 
was finally set at 4. The preference value given for the driver 
variables  were  also  changed  and  the  corresponding  results 
were checked during the calibration phase. 

For the calibration data set corresponding to the year 
1997,  the percentage of correctly predicted cells is 78.27%. 
For the validation data set corresponding to the year 2002, the 
percentage of correctly predicted cells is 77.68% (figure 2). 
Calibration report for 1997     Validation report for 2002
Correctlypredicted:5568209 cells     Correctlypredicted:5532171cells
Commission error:784343 cells        Commission error :815829 cells
Omission error:761481 cells      Omission error:773801cells

Correctly predicted cells include, degraded and non-degraded 
cells present  in both original  land degradation map and the 
predicted land degradation layer. Commission error indicates 
cells,  which  were  not  found  as  degraded  in  original  land 
degradation  map,  but  has  been  predicted  as  degraded. 
Omission error indicates cells, which were found as degraded 
in original land degradation map, but has not been predicted as 
degraded.

Dynamic  terrain-related  processes  are  complicated 
in nature as number of factors plays a role in reality. Some of 
the drivers, which could have played a role in the degradation 
process, could have been omitted, possibly because they could 
not be recorded or monitored.  

In  the  present  study  a  probability-based  cellular 
automata has been implemented. A state-based cellular which 
is based on the neighborhood configuration alone has evolved 
into  suitability-based  cellular  automata  and  then  into  a 
probability-based  cellular  automata  with  the  inclusion  of 
suitability  score  and stochastic  disturbance  factors.  In  state-
based cellular automata, the state of a cell will depend on the 
state  of  the  neighboring  cells.  It  becomes  more  logical  to 
include the land suitability for degradation score  as another 
factor contributing to the degradation process  in addition to 
neighborhood configuration.  Also, the stochastic disturbance 
factor helped in creating some randomness and took care of 
some of the unknown errors in the simulation.
 

4. CONCLUSION

Integrated  CA-GIS  approaches  can  enhance  the 
current poor spatial dynamic modeling capability of GIS (Park 
and Wagner 1997). CA models can be completely developed 
within GIS for easily accessing the information stored in the 
GIS database during the modeling processes.  Constraints for 
modeling can be defined using GIS and remote sensing data. 
Remote sensing can be used to obtain land use and other land-
related data, and this data can be transformed, so that it can be 
used  in  GIS  for  analysis  and  modeling.  Therefore,  the 
development of CA within GIS greatly enhances the ability of 
dynamic spatial modeling within GIS.

 Achieving prediction accuracies of the order of 78% 
is a significant task, as dynamic terrain-related processes are 
complicated and there could be a possible omission of some of 
the driver variables, which could not be recorded or monitored. 
The integrated CA-GIS framework proves to be a promising 
environment, wherein a variety of spatial-dynamic phenomena 
can be modeled.

The  model  developed  for  simulating  the  spatial 
dynamic process  can be used as  a planning tool  to test  the 
effects  of  different  land  use  change  scenarios.  Cellular 
Automata  are  seen  not  only  as  a  framework  for  dynamic 
spatial  modeling,  but also as a paradigm for thinking about 
complex  spatial-temporal  phenomena  and  an  experimental 
laboratory for testing ideas.
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