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ABSTRACT: 
 
Understanding temporal urban growth is very crucial to the interpretation of urban morphology and a key challenge for the study of 
rapid urbanization in contemporary China. Previous land use change modelling approaches only consider the spatial complexity that 
may be indicated by spatial dependence and landscape fragmentation, ignoring the temporal complexity inherent in the process of 
urban growth. Multi-temporality is a typical characteristic of urban growth and multi-temporal data availability has been much 
improved due to great advance in geospatial technology particularly remotely sensed imagery.  This paper proposes an innovative 
application of a machine learning method – Maxent for analysing the urban morphology of a fast growing city –Wuhan, China. 
Multi-temporal data sets for 1955, 1965, 1993 and 2000 were processed from remotely sensed imagery. The results demonstrate that 
Maxent is an effective exploratory method and tool for understanding urban morphology.  
 
 

1. INTRODUCTION 

Rapid urbanisation has stimulated fast urban growth occurring 
in Chinese cities and other developing countries.  Wuhan, a 
mega city in Central China, has seen its urban built-up areas 
grow tenfold between 1955 and 2000 (Cheng and Masser, 2003). 
Understanding temporal dynamics of urban form and urban 
land cover/land use is a prerequisite to making appropriate 
sustainable urban development policies and strategies. 
Stimulated by rapid advances in geospatial technologies, high-
resolution remotely sensed imagery has become widely 
available and at low cost. Such factors have made monitoring 
urban growth possible and more successful in developing 
countries.  Moreover, various models have been developed and 
explored for interpreting, predicting and simulating urban 
development pattern and processes and assisting the decision 
support of urban growth management and planning.  Among 
these models, logistic regression, cellular automata and multi 
agent system methods have received a lot of attention. However, 
most models are only focused on the spatial complexity of 
urban growth system, not on temporal complexity. Urban 
growth is a continuous process, which means that new buildings, 
roads, and commercial centres emerge temporally accidentally. 
Multi-temporality is a typical characteristic of urban 
morphology. Three classic theories of urban morphology were 
developed in the 1970s: the concentric zone theory, the sector 
theory and the multiple nuclei theory. These theories have 
defined morphological factors (e.g. distance to city centre(s), 
distance to main corridors) which affect urban development 
patterns. Morphology analysis makes it possible to summarise 
the changes and trends of the urban spatial structure. For 
example, we need to establish the dominant morphological 
factors (e.g. proximity and development density) driving urban 
growth in multi-temporal periods. Such findings can make a 
useful contribution to the local knowledge of urban 
development planning.  
 
The availability of multi-temporal data sets offers great 
opportunity for measuring and understanding urban 

morphology. However, previous studies in urban morphology 
were focused on the measurement of urban morphology using 
methods such as fractals, density gradient and landscape matrix. 
These methods only provide single or multiple indicators for 
spatially measuring urban morphology, instead of, temporally 
modelling urban morphology. Multi-temporal spatial modelling 
is still not well developed in geospatial areas. In this paper, we 
propose an innovative application of a machine learning method 
– Maxent, for analysing urban morphology of a fast growing 
city (Wuhan, China). Multi- temporal data sets are available for 
1955, 1965, 1993 and 2000, which were processed from 
remotely sensed imagery. This research has demonstrated that 
Maxent is an effective exploratory method and tool in helping 
understand urban morphology.  
 
  

2. DATA  & METHODOLOGY 

2.1 Data sources and processing 

Wuhan is located in Central China on the middle reaches of the 
Yangtze River. Wuhan municipality, the capital of Hubei 
province, has a total population of about 8 million over an area 
of 2000 km2 in 2007. Wuhan is known as ‘Water City’ (Jiang 
cheng) due to the two rivers (Yangtze and Han rivers) that 
intersect here, and the surrounding lakes. In previous research 
(Cheng, 2003), temporal urban growth of Wuhan from 1955 to 
2000 has been mapped (see figure 1) based on primary data 
sources composed of aerial photographs from 1955 (scale 
1:25000) and 1965 (scale 1:8000), SPOT Pan/XS images taken 
in 1986 and 2000, and secondary data sources (e.g. land use 
map of 1993, topographic maps of 1993, traffic and tourism 
maps and master plan schemes). Land conversion was detected 
and classified using the maximum likelihood method (SPOTs) 
and visual interpretation (photographs).  
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2.2 Maxent method 

Maxent is a general-purpose method for characterizing 
probability distributions from incomplete information based on 
the principle of maximum entropy. In urban and transport 
geography, the maximum entropy principle has been 
successfully applied to model spatial interactions, such as the 
flows of trips, immigrants, and vehicles. Maxent’s strength was 
first discovered in the successful applications for natural 
language processing. Recently Maxent methods have been 
widely explored and applied in species distribution modelling 
where only presence data is available for prediction (e.g. 
Phillips et al., 2006; Loiselle et al, 2008,). The main advantages 
of Maxent include, as summarized by Phillips et. al. (2006): no 
requirement of independence between predictor variables, only 
presence data, easy and efficient deterministic algorithm. 
Maxent is a generative approach, rather than discriminative. 
Many researches have shown Maxent has higher efficiency in 
learning and testing over support vector machine.  
 
This paper aims at explore potential application of Maxent for 
urban morphology analysis using multi-temporal data sets. We 
use the presence-only (or called growth-only) data in multi-
temporal periods. This application is different from urban 
growth pattern analysis, in which the probability of land 
conversion is calculated for both presence and absence (no land 
conversion) areas in the same period of urban growth. Logistic 
regression (conditional version of Maxent) has been widely 
applied for urban growth pattern modelling (Cheng and Massser, 
2003).  However, in most cases, it is hard to define an explicit 
boundary within which we can sample absence sites. This urban 
morphological analysis attempts to temporally compare the 
growth-only data distributions among multi-temporal periods. 
 
Supposed that we have n urban morphological variables (called 
environmental variables in species distribution modelling) that 
are treated as features in Maxent, and m pixels in the study area, 
which defines a probability space,  we denote the n variables as 
function fi (i=1 to n) and their values at pixel j (j=1 to m) as fi(j). 
The probability space is split into two parts: sample (k=1 to m1) 
and background (k=1 to m2). i.e. m1+m2 =m. The sample part is 
composed of the growth pixels occurring in period p1, i.e. the 
areas converted from non-urban into urban in a single specific 
period (e.g. 1965-1993). Background is composed of the growth 
pixels occurring in another period p2 (e.g. 1955-1965) and 
provides reference sites for comparisons. The unknown 
probability distribution over the entire space (m pixels) is 
denoted as X. Then the probability being present at site j is X(j).  
 
The maximum entropy principle aims to estimate the 
probability distribution function X given the constraints that  
the expected value of each feature fi under this estimated 
distribution matches its empirical average. The empirical 
average of each feature fi (i=1 to n) over the sample part (m1 
pixels) is known and represented as gi, that is based on a 
uniform distribution. The expectation of the feature fi under X 
is defined as ∑X(j)fi(j) and denoted by hi, contrasting with gi. 
We assume hi can be approximately estimated by gi. By the 
maximum entropy principle, therefore, we seek the probability 
distribution X of maximum entropy subject to the constraints 
that each feature fi has the (or nearly) same mean as observed, 
i.e. hi=gi. The implementation of maxent uses a sequential-
update algorithm (Dudık et al., 2007) that iteratively picks a 
weight and adjusts it so as to minimize the resulting regularized 
log loss.  
 

Maxent uses the receiver operating characteristic (ROC) 
analysis to evaluate the performance of a model. A ROC plot is 
created by plotting sensitivity values against 1-specificity for all 
probability thresholds. The sensitivity is the fraction of all 
positive instances (sample part) representing absence of 
omission error, while 1-specificity is the fraction of all negative 
instances (background part) representing commission error. The 
area under the curve (AUC) is a single number to assess model 
accuracy, which usually ranges from 0.5 (random or similar) to 
1.0 (perfect discrimination). The higher the AUC value is; the 
more distinct morphological characteristic between the periods 
of p1 and p2 it informs us.  
 
2.3 Exploring and selecting features 

In this paper, urban form, or morphology is classified as 
compact development (higher density of built-up area in its 
neighbourhood), road-led development (better proximity to 
main roads), polycentric development (better proximity to main 
commercial centres), industrial centric development (better 
proximity to industrial centres) and river-led development 
(better proximity to rivers).  To explore the dominant urban 
morphology in multi-temporal periods, several spatial 
explanatory variables corresponding to these morphological 
factors (proximal or density oriented) have been incorporated 
into Maxent models for spatio-temporal exploration. They are 
denoted as Deve_Density (neighbourhood density of urban 
built-up areas), Dist_MainRoad (distance to main roads), 
Dist_Centres (distance to main commercial centres), 
Dist_Industrial (distance to industrial centres) and Dist_River 
(distance to rivers). Change5565, change6593 and 
change932000 are used to represent the urban growth occurring 
in the periods of 1955-1965, 1965-1993 and 1993-2000 
respectively. Then all morphological factors are measured on 
these growth-only pixels based on right temporal 
correspondence. It means that Dist_MainRoad for Change5565 
will measure the distance of each pixel in the layer of 
Change5565 to the closest main road of 1965 and 
Deve_Density measuring the density of developed areas of 
1955, and so on. In order to save computational time, all raster 
layers are re-sampled in ArcGIS from original 10-m resolution 
to 100-m resolution. Neighbourhood density was calculated as 
the percentage of built-up area to the total developable area (e.g. 
excluding water body and protected areas) in a circle with a 
radius of 100 pixels (10km).  Then log transformation of the 
four proximal variables is taken in order to make them follow a 
normal distribution as much as possible. Finally these raster 
data are converted into MOS-DOS text file format (.csv) for use 
in the Maxent modelling software. 
 
 

3. RESULTS  

3.1 Measuring temporal urban growth 

The temporal urban growth of Wuhan from 1955 to 2000 is 
mapped in figure 1. Due to space constraints, only the 
morphological indicator of main roads in the three periods is 
mapped in figure 2. The information dimension of fractal 
measuring the evenness degree of spatial distribution was 
calculated as 1.67034, 1.7134, 1.740, 1.753 and 1.78 for the 
urban built-up areas of 1955, 1965, 1986, 1993 and 2000 
respectively (Cheng, 2003). The information dimension shows a 
general trend of increasingly even distribution which can be 
theoretically explained by the spatial process from leap-forward 
development to compact development pattern However, the 
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fractal measure of spatial complexity still lacks adequate 
interpretation capability for urban morphology due to the fact 
that the same value of a fractal dimension may represent 
different forms or structures. Using linear regression analysis, 
the spatial impact of each morphological factor on urban growth 
can be quantified as a kind of density (or probability) gradient 
that represents the negative exponential relationship between 
the probability values of land conversion from non-urban to 
urban and the distance rings in relation to the morphological 
factor. Cheng and Masser (2003) previously explored the 
density gradient values of main road, main commercial centres, 
industrial centres, rivers and developed area density for the 
urban growth in the period 1993-2000.  
 
 

 
 

Figure 1. Temporal urban growth of Wuhan 1955-2000 
 
All five factors showed significant spatial impacts and their 
density gradients were calculated as -0.00076, -0.000225, -
0.00013, -0.00003 and 0.465 respectively. For example, the 
probability of land conversion is the exponential function of 
Dist_MainRoad (i.e. probability value = exp (-1.05-0.00076 * 
Dist_MainRoad). The higher the absolute gradient value is, the 
greater impact it has. As a result, the relative ordering will be 
proximity to main roads, commercial centres, industrial centres 
and rivers in terms of their growth density gradient. The spatial 
impacts of these morphological factors are measurable and 
comparable. However, density gradient measurement only 
provides a single indicator for relative comparisons in the same 
period and is unable to temporally compare the contribution of 
each morphological factor to urban morphology. Looking at 
figures 1 and 2, the time-series model of urban expansion offers 
an intuitive hypothesis that the city gradually changed its 
development axes from rivers to major roads and also shifted 
from a mono-centric to multi-nuclear spatial structure. Next, the 
Maxent method is used to explore the hypothesis. Because of 
the relatively slight change from 1965 to 1986, only the 
temporal urban form in the three periods: 1955-1965, 1965-
1993 and 1993-2000 is considered here.  
 

 
 

Figure 2. Main roads in the years of 1965, 1993 and 2000 
 
3.2 Maxent models 

The three presence data layers processed are Change5565 (6152 
pixels), Change6593 (7233 pixels), Change932000 (6109 
pixels), which indicate the total urban growth occurring in the 
periods of 1955-1965, 1965-1993 and 1993-2000 respectively. 
40% random sampling was taken from each of them for the uses 
of Maxent modelling. An absence-only data layer - Unchange 
(8317 pixels) was defined by taking a 20% random sample from 
developable pixels (e.g. agriculture and bare land) in 2000. This 
layer will serve as a reference for comparison purpose.  
 

 
 

Figure 3. Maxent modelling interface 
 

Maxent was implemented using version 1.8.2 of the software 
developed by Phillips and colleagues (for free download see: 
http://www.cs.princeton.edu/_schapire/maxent/). 5000 was set 
up as maximum iterations with convergence threshold 0.00001, 
and 30% of sample sites (e.g. from Change5565) was taken for 
training and the remaining 70% for testing. Suitable 
regularization values, included to reduce over fitting, were 
selected automatically by the program (see figure 3). The 
selection of two data sets separately defining sample and 
background is dependent on the purpose of temporal 
comparison, e.g. the urban growth in 1955-1965 against that in 
1965-1993.  
 
First, a Maxent model (figure 3) is built using two presence data 
layers - Change6593 as sample and Change5565 as background, 
which aims to explore the distinct morphological characteristics 
between urban growth occurring in the periods 1955-1965 and 
1965-1993. In Maxent modelling, AUC (see figure 4) is a 
model performance indicator comparing the probability 
distributions between sample and background layers. The 
higher the AUC value is, the more distinct patterns it discloses. 
The AUC value shown in figure 3 is 94%, well beyond 80%, 
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which indicates that the morphological characteristics of urban 
growth can be significantly distinguished between the two 
periods.  
 
 

 
 

Figure 4.  AUC graphic showing model performance 
 
 

Models Model 1 Model 2 
Sample Change6593 Change932000 
Background Change5565 Change6593 
AUC > 0.94 > 0.90 
Dist_Centres 5.4     (-) 5.1     (+/-) 
Dist_MainRoad 6.1    (+/-) 12.0   (+) 
Dist_Industrial 15.1   (-) 41.1    (-) 
Dist_River 9.3     (-) 9.2      (-) 
Deve_Density 64.1   (+) 32.6    (+) 
Total (%) 100 100 

 
Table 1. Selected outcome of Maxent modelling 

 
 

Models Model 3 Model 4 
Sample Change932000 Change932000
Background Change5565, 

Change6593 
Unchange 

AUC >0.94 >0.90 
Dist_Centres 0.8    (+/-) 30.8   (+) 
Dist_MainRoad 8.9    (+) 62.8   (+) 
Dist_Industrial 42.6   (-) 5.2    (+/-) 
Dist_River 10.0   (-) 5.0    (+/-) 
Deve_Density 37.7   (+) 6.2    (+/-) 
Total (%) 100 100 

 
Table 1. Selected outcome of Maxent modelling (continued) 

 
 

 
 
Figure 5. Detail of relative contributions (65/93 and 65/55) 
 
The five rows from Dist_Centres to Deve_Density in table 1 
measure the relative contribution of each morphological factor 
to the AUC value. Figure 5 explains the detail of what is meant 
by relative contribution, which graphically confirms the 

contribution values declining from Deve_Density down to 
Dist_Industrial, Dist_River, Dist_Centres and Dist_MainRoad.  
However, relative contribution alone is not sufficient to 
conclude on the dominant urban morphology characteristics – 
e.g. compact or leap forward development (by the highest 
contribution - Deve_Density), because of the lack of 
information concerning the direction or nature of contribution: 
positive (the higher value, the greater probability of conversion) 
or negative (the higher value, the smaller probability of 
conversion). It should be noted that positive or negative is a 
relative term, depending on which side you are standing on, 
1955-1965 or 1965-1993. If it is positive to 1965-1993, then it 
must be negative to 1955-1965 as sample and background data 
sets can swap in Maxent model of this particular application. 
Figures 6-8 show the responses of Change6593 to three 
morphological factors with higher relative contribution. Figure 
6 indicates a positive response to Deve_Density; Figure 7 the 
negative response to the proximity of industrial centres 
(proximity is opposite to distance, the higher the Dist_Industrial 
is, the lower the proximity is, so do other proximal variables); 
and Figure 8 the negative response to the proximity of rivers 
(Dist_River) again. To help interpret the dominant 
morphological characteristics in each period, the direction of 
contribution was added to each explanatory variable in Table 1, 
in which plus (+) indicates positive and minus (–) negative. As 
a result, the relative contributions in Table 1 exhibit that urban 
growth in 1965-1993 was dominated by relatively compact 
development as indicated by Deve_Density (+64.1%) and 
conversely urban growth in 1955-1965 was dominated by leap 
forward development (-64.1%) expanding out from industrial 
centres (+15.1%) and rivers (+9.3%).    
 
   

 
 
            Figure 6. Response of Change6593 to Deve_density 
 
Second, two other Maxent models (see table 1) were built by 
changing the data sets of sample and background, which allow 
different morphological analysis varying with urban growth 
periods to be compared. Model 2 enables us to conclude that 
urban growth in 1993-2000 was dominated by relatively 
compact development (Deve_Density +32.6%) and road led 
development (Dist_MainRoad +12%), conversely urban growth 
in 1965-1993 was dominated by industrial centric development 
(+41.1%) and rivers along development (+9.2%). Model 3 
enhances the conclusion with dominant morphological 
characteristics of urban growth 1993-2000 through comparing it 
with the total urban growth 1955-1965 and 1965-1993.  
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Figure 7. Response of Change6593 to Dist_Industrial 
 
 

 
 

Figure 8. Response of Change6593 to Dist_River 
 
Finally, a Maxent model (model 4 in table 1) was built with 
Change932000 as sample and Unchange as background. Model 
4 exhibits a morphological trend of multiple centric and main 
roads led development, which is consistent with the current 
urban development strategies of mega cities in China. 
Integrating the findings from these four models, a general 
conclusion can be made that urban morphology of Wuhan city 
from 1955 onwards shifted from leap forward development to 
industrial centric compact development, to the mixture of road 
led development and multi-centric development. Such 
quantitative evidence is highly consistent with the visual 
perception of local experts and other theoretical understanding 
(e.g. Wu, 1998) and therefore, Maxent modelling provides an 
effective exploratory environment (e.g. figures 4-8) for 
interpreting urban morphology. 
 
 

4. DISCUSSION AND CONCLUSIONS 

When applying traditional regression analysis for spatial issues, 
we usually need to take spatial autocorrelation into account, 
such as spatial logistic regression (Cheng and Masser, 2003), 
which is a typical requirement for modelling urban growth 
patterns. In this paper, for testing the effect of spatial 
autocorrelation on urban morphology analysis, model 1 (in 
table 1) was modified by taking all pixels (instead of 40% or 
less random sampling) into the sample and background data sets. 
This should obviously result in stronger spatial autocorrelation 
of each explanatory variable in both sample and background 
layers. Applying Moran’ I method (neighbourhood is defined as 
a circle with a radius of 1000 metre), the spatial autocorrelation 

values calculated range from 0.51 up to 0.97. However, the 
relative contributions as calculated as Deve_Density (66.7%), 
Dist_Centres (5.7%), Dist_Industrial (15.6%), Dist_MainRoad 
(5.6%) and Dist_River (6.4%), exhibit no significant changes in 
terms of amount and direction. The AUC of this model is > 0.95, 
nearly the same as model 1. Consequently it can be claimed that 
Maxent modelling is not sensitive to spatial autocorrelation. 
This is particularly beneficial to urban morphology analysis in 
which morphological factors (e.g. proximal and neighbourhood 
density variables) always exhibit strong spatial autocorrelation 
as being different from the environmental features in species 
distribution modelling.  
 
The Maxent application for urban morphology, compared to 
those for species distribution modelling (e.g. Phillips et al. 
2006), is characterized by rich rather than sparse data of 
presence sites, no sample selection bias, more uses for 
understanding instead of predicting and at metropolitan scale 
not global scale. This paper has demonstrated Maxent’s strong 
capacity for exploratory analysis which can be easily used for 
communication with local planners. In future work, we will 
compare the Maxent method with other machine learning 
methods such as support vector machine. We will also continue 
the morphological analysis of Wuhan with the data set of newly 
emerging urban growth from 2000 onwards. 
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