
COMPARISON OF TILE SERVER DESIGN APPROACHES FOR 3-D
GEO-VISUALIZATION

Tao Wanga, Jianhua Gongb

aState Key Laboratory of Remote Sensing Science ,Institute of remote sensing applications chinese academy of sciences

- wangtao_temp@yahoo.com.cn
bState Key Laboratory of Remote Sensing Science ,Institute of remote sensing applications chinese academy of sciences

- jhgong@irsa.ac.cn

Commission VI, WG VI/4

KEY WORDS: Tile server, Wms, Visualization

ABSTRACT:

In order to display large-scale maps on the Internet, it is necessary to divide the huge spatial data into small tiles. And servers are
needed to support the display across network. There are two kinds of tile server. One is tile server, which organizes the pre-rendered
tiles on the server. Another one is MapServer, which generates the display tile. In this article, different servers are compared in
efficiency. The open source software world wind is used to analyze the capacity of the two kinds of servers, and experiment results
show that tile server spent more time than Mapserver, and it is suggested the Mapserver may have been optimized.

1. INTRODUCTION

When displaying large-scale maps on personal and mobile
computers, it is necessary to divide the huge spatial data into
small tiles. There are many important characteristics of the
tileset file format.

A tileset map can be used in memory-mapped mode on
computers having either “little-endian” or “big-endian”
architectures.

The tileset file format accommodates either lossy or lossless
compression of bitmaps, or a combination of both.

Tilesets can be used effectively on systems with very little
memory. Since the component tile spatial clustering is based on
the morton square schema, fastest possible navigation within
large external files is assured.

Once a tileset has been assembled, all geopositioning and
navigational functions use only integer arithmetic. Despite
this, geometry computations are both global in scope and of
centimetre-range precision. The tileset file format therefore is
well suited for use in devices having no floating-point hardware.

In order to display these tiles, tile server is needed. There is a
kind of tile server called on demand tile server, on demand tile
server is capable of generating tiles. ArcIMS doesn’t serve tiles,
it renders complete maps and serves them. The Virtual Earth
and Google maps Internet services are tile services because they
serve up pre-rendered tiles. ArcIMS renders maps on the fly,
while these new consumer mapping service don’t.

MapDotNet Server let users combine dynamically rendered tile
overlays based on local spatial data sets with pre-rendered
Virtual base maps and Web 2.0 functionality. MapDotNet
Server can optionally cache tiles so that unchanged data doesn’t
have to be queried and rendered repeatedly.

After researching Google Earth Enterprise, which includes
Google Earth Fusion, and MapCruncher for Virtual Earth, we’re
finding out that the ability to serve tiles on demand that are
rendered at the time of the request, and overlay these tiles on a
Virtual Earth or Google Maps base map is unique. Google Earth
Enterprise LT offers some of this functionality, but only for the
fat Google Earth 3D client. It’s actually uncertain that Google
Earth Enterprise LT can serve tiles that are generated on
demand, but it can overlay pre-rendered tiles that are based on
your own data in the Google Earth fat client.

There’s an almost unfathomable number of options out there for
people that want to visualize spatial data or perform geographic
analysis and functions.

OpenLayers is an interesting Internet based tile service much
like Virtual Earth and Google Maps. OpenLayers allows you to
add layers from a WMS service. A WMS service will render
tiles on demand. you could theoretically use WMS Tile Caching
with OpenLayers and have a high performance solution like
MapDotNet Server.

There’s not much theory there, EduGIS.nl used mapbuilder and
UMN MapServer to serve tiles in a WMS-C style (it was
written before the WMS-C spec was finalized). It uses apache to
cache the tiles and is as quick as google maps. The only
problem of this solution is the manageability of the cached data.
It is not very easy to remove those tiles of the cache that need
updating. The current approach is very much a
render-on-demand: if it is in the cache serve for the cache, if not,
render the tile from the data and put it in the cache.

Spatial data visualization and Enterprise GIS are being
transformed rapidly by these technologies, and they are all
making it into the mainstream. An on demand tile server that
can leverage Virtual Earth base maps and cache local tiles for
better performance provides organizations with the Web2.0 user
experience they are looking for alongside the depth of real GIS
capabilities and resources that they’ve been working on building
for the past 2 decades.

445

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

2. PRINCILE OF TIEL SERVER AND MAPSERVER

In the open source software World Wind, there are two kinds of
tile server. One is based on the MapServer, another is tile server.
Here we’ll discuss their difference and how to build them.

Although World Wind provides good map and aerial coverage
of most areas, you are still the best authority on data availability
and data quality for your own needs. Whether you have
advanced imagery, engineering plans, or transportation maps,
serving this information is often a challenging problem. You
can take advantage of World Wind’s Tile Layers to create your
own imagery server that integrates fully with the navigation
methods, data and tools built into World Wind.

In this article, we will look at the techniques you need to serve
up your own image data using World Wind technology.

The most difficult challenge in building your own tile server lies
in matching up your data with the World Wind map data. This
process is often challenging, because you have to overcome the
joined problems of projection and registration. That is, you need
to stretch your image to fit World Wind’s Plate Carree
projection, and you also have to determine latitude and
longitude boundaries of your image.

Behind the scenes, World Wind Tile Server divides up each
map and map style into a set of 512*512 pixel tiles. The tiles are
stitched together according to a naming schema that is based on
the images position and relative degree of resolution. Each tile
is numbered according to where it is with respect to a 4 square
quadrant system.

Tile Server use what is defined as “Level Zero Tile Size” to
determine how large (in decimal degrees) each tile is in width
and height (all tiles are square). A standardized level zero tile
size is under consideration but is not yet implemented, but it
must divide into 180 evenly. The level zero tile size is simply
the distance traveled in degrees from one side of a tile to the
next side. In the NLT Landsat 7 datasets, the LZTS is normally
set as 2.25 degrees. For each increase in level, the LZTS
calculated using this formula: LZTS*0.5^level. What this does
effectively decreases the tile size by one half for each increase
in level. Where there was one tile, there are now four.

To find the coordinates of the bottom left corner of the next
higher tile you would add the appropriate tile size for the level
you are in, to the latitude and/or longitude. Adding to latitude
would of course increase the Y value, longitude increasing the
X value. Figure 1 demonstrates bringing both the concept of
X/Y (now displayed as (x,y)) and latitude/longitude. Figure 2
has a LZTS of 2.25 degrees.

Figure 1 World wind tile structure

To prepare your own tiles, you will need to cut your image into
512*512 pixel chunks and create a meaningful naming
schema. You will also have to decide how you want to host
your images. If you intend to follow World Wind Tile Server
naming schema, you will need to figure “register” your images
with respect to the World Wind tiles. That is, your tiles must
share bounding boxes with WW tiles.

World Wind Tile Server uses a multi-resolution layering
technique that shows progressively more detail as a user zooms
in to various locations. To do this, World Wind stores multiple
copies of the same map at the successively higher resolutions.
Using a map in WGS 84 projection of the earth as an example,
at layer 0, world wind breaks down the image into 50 tiles, each
at 36 * 36 segments, see following figure. Layer 1 increases this
resolution by a factor of 4, meaning that the same image of
Earth is now broken down into 18 * 18 segments, resulting in
200 tiles of information. At layer 2, the resolution becomes 9 *
9 for 800 tiles, Layer 3 is 4.5 * 4.5 and 3200 tiles, etc.

Figure 2 Coordinate system of world wind

As a user zooms in to various locations, World Wind requests
the necessary data from servers across the internet, downloading
only the information that is required to display the view
requested by the user.

In its simplest form, World Wind directly requests tiled imagery
(images of size 512*512 in jpeg and other formats) from a
server using a simple NASA custom HTTP request protocol.
The client issues a simple request with the following
parameters:

446

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

T=dataset &X= column &Y= row &L=resolution level.
Here, the column, row and level parameters refer to the location
and size of the geographically referenced region on the
worldmap in a simple geographic projection.

Proper elevation data and image coverage are requested for the
specific resolution layer and view point. World Wind caches the
requested data locally and therefore can seamlessly transition
from one layer to the next, revealing successively more detail as
the user navigate around the World:

Equally well supported is the Web Mapping Service 1.3
protocol specification from the Open Geospatial Consortium.
WMS is a broadly adopted standard. World Wind easily
operates with servers based on this standard.

In order to have a good understand of WMS, we use the open
source software MapServer to build the tile server.

MapServer is an open source development environment for
building spatially-enabled web mapping applications and
services. It is fast, flexible, reliable and can be integratated into
just about any GIS environment. Originally developed at the
University of Minnesota, MapServer is now maintained by
developers around the world.

MapServer run on all major operating systems and will work
with almost any web server. MapServer features MapScript, a
powerful scripting environment that supports many popular
languages including PHP, Python, Perl, C# and Java. Using
MapScript makes it fast and easy to build complex geospatial
web applications[4].

MapServer works behind a web server application. The web
server receives requests for maps and passes them to MapServer
to create. MapServer generates the requested map image and
hands it to the web server, which transmits it back to the user.
The above figure shows how the users interacts with the web
server which, in turn, makes requests to the MapServer program.
Fig 3 shows wms server architecture[4].

MapServer’s primary function is reading data from various
sources and pulling these layers together into a graphic file, also
known as the map image. One layer may be a satellite image,
another outline of your country or points showing a major city.
Each layer is overlaid or drawn on top of the others and then
printed into a web-friendly graphic for the user to see. A good
example of the results of the overlapping and mapping process
can be seen. You can see a satellite image(from a remote server),
road lines, and city locations; the city labels are dynamically
generated by MapServer. Fig 3 shows the basic operation of a
Mapserver’s application[4].

Figure 3 WMS server architecture

This drawing process occurs each time a request for a new map
is made to MapServer, for instance, when a user zooms into the
map for a closer look. This process also occurs when a user
manually requests a redraw, such as when the content of one
data layer changes, and the user wants to see the change.

MapServer creates map images from spatial information stored
in digital format. It can handle both vector and raster data.
MapServer can render over 20 different vector data formats,
including shapefiles, PostGIS and ArcSDE geometries,
OPeNDAP, Arc/Info coverages, and Census TIGER files[4].

MapServer can operate in two different modes: CGI and
MapScript. In CGI mode, MapServer functions in a web server
environment as a CGI script. This is easy to set up and produces
a fast, straightforward application. In MapScript mode, the
MapServer API is accessible from perl, Python, or PHP. The
MapScript interface allows for a flexible, feature-rich
application that can still take advantage of MapServer’s
templating facilities[4].

MapServer is template based. When first executed in response
to a web request, it reads a configuration file (called the mapfile)
that describes the layers and other components of the map. It
then draws and saves the map. Next, it reads one or more
HTML template files that are identified in the mapfile[4].

Figure 4 Diagram showing the basic operation of a MapServer
application.

Following is a list of the required GetMap parameters according
to the WMS spec:

VERSION=version: Request version

REQUEST=GetMap: Request name

LAYERS=layer_list: Comma-separated list of one or more map
layers. Optional if SLD parameter is present.

STYLES=style_list: Comma-separated list of one rendering
style per requested layer. Optional if SLD parameter is present.
NOTE that MapServer does not support named styles, so most
times you would specify “STYLE=” with an empty value.
MapServer does support STYLE when used with an SLD.

SRS=namespace:identifier: Spatial Reference System.

BBOX=minx,miny,maxx,maxy: Bounding box corners (lower
left, upper right) in SRS units.

WIDTH=output_width: Width in pixels of map picture.

447

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

HEIGHT=output_height: Height in pixels of map picture.

FORMAT=output_format: Output format of map. 4. CONCLUSION

Instead of using an overlay complex format (for serving
predefined chunks that is) WorldWind opted to go with
pre-rendered, pre-defined tiles that are just stored in the file
system, and can be served to the client with no further
processing server side. This reduces the strain on the server
incredibly. Mapserver can give different tile size according to
the request. But from the statistics, tile server spent more time
than Mapserver. So Mapserver may have been optimized. A
deep research should be done to have a good understanding of
Mapserver.

A valid example from WorldWind would therefore be:

Url:http://wms.jpl.nasa.gov/wms.cgi?request=GetMap&layers=
global_mosaic&srs=EPSG:4326&width=512&height=512&bbo
x=114,28,116,36,30&format=image/jpeg&version=1.1.1&style
s=visual

3. EXPERIMENT

NASA uses just a filesystem backend for almost all of WW’s
datasets, including elevation. TerraServer, which pulls the tiles
from a SQL database. OnEarth with a WMS + a smart CGI
script + a cache for WW. The Free Earth Foundation server for
the Zoomit Dataset and others using a packed tile schema and
some simple PHP.

ACKNOWLEDGEMENTS

This research is partially supported by National High-tech R&D
Program (863 Program) (2006AA12Z204), the Key Knowledge
Innovative Sub-Project of Chinese Academy of Sciences
(Kzcx2-yw-126-01), and National Basic Research Program of
China, 973 Program, No. 2007CB714402.

We can’t analyze the difference of map, so we use the world
wind to analyze.

1.From World Wind, we compare the time of tile server and
MapServer. Figure5 shows downloading time from the two
different server, Following data are choosed for testing.

REFERENCE

2.Cubed ESAT World Landsat7 Mosaic NASA derived global
15 meters per pixel satellite image mosaic, donated and
processed by I-Cubed using equipment from Isilon Systems.
(blue line)

[1] Bill Kropla, 2005, Beginning Mapserver: Open Source GIS
Development. Apress.

[2]Tyler Mitchell, 2005, Web Mapping illustrated. O’Reilly.

3.OnEarth 15m Global Mosaic, pseudocolor. (red line) [3]Schuyler Erle, 2005, Mapping Hacks. O’Reilly.

4.OnEarth 15m Global Mosaic, visual. (yellow line) [4]OGC,http://www.opengeospatial.org/(accessed January

2007) Transferation time of different levels are calculated. Only five
levels are included.

[5]David G.Bell, Frank Kuehnel, NASA World Wind:
Opensource GIS for Mission Operations.

0

2

4

6

8

10

12

14

level 2 level 3 level 4 level 5

1

2

3

[8]Open source community portal,
http://www.worldwindcentral.com. (accessed Apr 2008)

[9]OpenGIS, Beaujardiere, J. (editor)(2004). OGC Web Map
Service Interface. OGC 03-109rl.

Figure 5 Image downloading time from different servers

448

http://www.worldwindcentral.com/

	1. INTRODUCTION
	2. PRINCILE OF TIEL SERVER AND MAPSERVER
	3. EXPERIMENT
	4. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCE

