
RENDERING 3D VECTOR DATA  
USING THE THEORY OF STENCIL SHADOW VOLUMES 

 
 

Chenguang Dai, Yongsheng Zhang, Jingyu Yang 

 
Zhengzhou Institute of Surveying and Mapping,  

Zhengzhou, PR. China- (dai_zism, yszhang2001, jyyang)@163.com 
 

Commission II, WG II/5 
 

 
KEY WORDS:  Stencil Buffer, Shadow Volume, Vector Data, Real-time Visualization, Terrain Rendering 
 
 
ABSTRACT: 
 
In geographical information systems vector data has important applications in the analysis and management of virtual landscapes. 
Therefore, methods that allow combined visualization of terrain and geospatial vector data are required. Such methods have to adapt 
the vector data to the terrain surface and to ensure a precise and efficient mapping. In this paper, a rendering method based on the 
stencil shadow volumes theory is presented, which allows high-quality real-time overlay of vector data on virtual landscapes. The 
method includes three steps which are the generation of the vector data polyhedra, creation of the mask in stencil buffer and the 
application of the mask to the scene to render the vector data. The research and experiment show that our approach is a screen-space 
algorithm and is of pixel-level precision. Since it does not suffer from aliasing artifacts like texture-based techniques and 
independent of the complexity of the terrain data set, it can achieve good performance for the rendering of 3D vector data. 
 
 

1. INTRODUCTION 

In geoscience analytical vector data represents one of the main 
categories managed by geoinformation systems. The vector data 
is typically represented by lists of coordinates defining points, 
lines, polygons, etc. These primitives are traditionally used for 
describing geographic entities, for example buildings, rivers, 
and vegetation or soil types. In GIS, vector data has important 
applications in the analysis and management of virtual 
landscapes. Therefore, methods that allow combined 
visualization of terrain and geospatial vector data are required. 
Such methods have to adapt the vector data to the terrain 
surface and to ensure a precise and efficient mapping. 
 
Real-time terrain rendering techniques have been extensively 
studied for a long time but methods for projecting additional 
vector data on a virtual landscape have gained less attention. 
The few methods existing so far can basically be divided into 
texture-based and geometry-based approaches. The texture-
based approach is to rasterize the vector data into a texture and 
use standard texture mapping techniques to project it onto the 
mesh during rendering. The geometry-based approach is to map 
the vector data to 3d geometric primitives and to render them as 
separate geometry with an additional offset. Both techniques 
comprise a number of challenges.  
 
Rasterization of the 2d vector data into a texture in a 
preprocessing step and then rendering the terrain using standard 
texture mapping implies several drawbacks. The frequently 
needed combination of several layers of geo-spatial data 
demands a separate texture for each data layer resulting in high 
memory requirements. Multitexturing techniques have to be 
applied to project the textures for different geospatial 
information onto the textured terrain. What is worse, the 
accuracy of the vector data is bound by the texture resolution 
leading to unpleasant results when zooming in and single texels 
become visible.  
 

A texture-based approach to visualize vector data was proposed 
by Kersting et al. (Kersting, 2002). Textures containing the 
vector data are generated on-the-fly using p-buffers. An on-
demand texture pyramid that associates equally sized textures 
with each quadtree node is used to improve visual quality when 
zooming in. However, many expensive p-buffer switches have 
to be performed, which leads to decreased rendering 
performance. Even with more recent and efficient extensions 
(e.g. framebuffer objects) each switch still requires a complete 
pipeline flush. A texture-based approach is presented by 
Schneider (Schneider, 2005) that also creates textures on-the-fly 
in an offscreen buffer. A perspective reparameterization 
adopted from perspective shadow mapping is applied taking 
into account the current point-of-view. 
 
Most 3d representations are based on a level-of-detail terrain 
model which is needed to handle large terrain data sets and 
whose geometry is refined according to the viewpoint. If vector 
data is mapped to such a multiresolution structure, it has to be 
adapted to the current level-of-detail in order to avoid rendering 
artifacts. Unfortunately, this procedure leads to an increase in 
the number of geometric primitives compared to the original 2d 
vector representation. Furthermore, a suitable z-offset has to be 
added to the created primitives during rendering in order to 
avoid z-buffer stitching artifacts.  
 
Wartell et al. (Wartell, 2003) presented an algorithm and an 
associated data structure that allows rendering of polylines on 
multiresolution terrain geometry. Since their system is based 
upon a continuous level-of-detail terrain rendering engine, an 
adaption of the polyline to the current state of geometry is 
required at runtime resulting in additional computational costs. 
In addition to the previously mentioned texture-based approach, 
Schneider et al. also presented a geometry-based approach for 
rendering engines based on static level-of-details (Schneider, 
2005). The vector data geometry is mapped to each LOD in a 
preprocessing step and integrated in the used quadtree ensuring 
rendering of corresponding terrain and vector data LODs. Since 
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the number of geometric primitives that have to be created 
grows with the terrain complexity, this method is not suited for 
very high resolution data sets, especially for vector data 
covering large areas. 
 
In this paper, we treat the rendering of vector data on virtual 
terrain as the vertical projection of the vector data on the 
surface of the terrain. A rendering method based on the stencil 
shadow volume theory is studied, which allows high-quality 
real-time overlay of vector data on virtual landscapes. The 
method includes three steps which are the generation of the 
vector data polyhedra, creation of the mask in stencil buffer and 
the application of the mask to the scene to render the vector 
data. 
 
The paper is structured as follows. First, we briefly introduce 
the research background and review the related work. Then, in 
section 2 we explain the theory of stencil shadow volumes. We 
describe our approach in detail in section 3, show experiment 
result in section 4 and draw conclusions in section 5. 
 
 

2. THEORY OF STENCIL SHADOW VOLUMES 

Shadow volumes are a technique used in 3D computer graphics 
to add shadows to a rendered scene. They were first proposed 
by Frank Crow in 1977 (Crow, 1977). A shadow volume is an 
enclosed area of space that looks somewhat like a cone or a 
pyramid. The tip of the shadow volume is the light source, the 
faces of the shadow volume are determined by the outline of the 
object that is casting the shadow. Any part of the scene that 
falls inside the shadow volume is shadowed, any part of the 
scene that falls outside the shadow volume is lit. 
 
 

Light source

Shadow volume

Occlusion

 
 

Figure 1.  The illustration of shadow map 
 
The method to test whether a pixel in the screen is inside the 
shadow volume or not is called shadow test. The shadow test is 
often realized by using the technology of the depth buffer and 
the stencil buffer, which can be divided into z-pass algorithm 
and z-fail algorithm according to the light ray used in the test 
(Everitt, 2002).  
2.1 Z-pass algorithm 

Figure 2 shows the theory of z-pass algorithm. For a pixel in the 
screen, we consider the ray starting from the camera 
(viewpoint). When the ray enters into the shadow volume, the 
stencil value increases one, otherwise, when the ray runs out the 
shadow volume, the stencil value decreases one. Finally if the 
stencil value is greater than zero, it means that the 
corresponding pixel is inside the shadow, otherwise if the 

stencil value is equal to zero, the pixel is outside the shadow. 
See Figure 2, the ray leaving the camera for point P enters into 
the shadow volume of object 2, into the shadow volume of 
object 1, out the shadow volume of object 2, into the shadow 
volume of object 3, out the shadow volume of object 3, out the 
shadow volume of object 1, the final stencil value of P is 
+1+1−1+1−1−1=0, which means that the point P is outside the 
shadow. Again for the point Q, the ray runs into the shadow 
volume of object 2, into the shadow volume of object 1, out the 
shadow volume of object 2, into the shadow volume of object 3, 
and the stencil value is +1+1−1+1 =2>0, which means the point 
Q is inside the shadow. 
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Figure 2. The z-pass algorithm 
 

Note that in the z-pass algorithm, if the shadow volume 
intersects with the near clipping plane of the view frustum, the 
additional surface must be added to the shadow volume to 
ensure the correct result, the reason of which is that after 
clipped by the view frustum, the shadow volume is likely to be 
open. See Figure 3, if the additional cap is not added, the stencil 
value will not increase when rendering the shadow volume, and 
the shadow test of those points in the affected area will fail. 
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Figure 3. The z-pass algorithm affected by the view frustum 
 

2.2 Z-fail algorithm 

If the camera (view point) is inside the shadow volume, the 
performance of z-pass algorithm would fail. See Figure 4, if the 
z-pass algorithm is applied, the stencil value of Q is −1+1=0, 
which means Q is outside the shadow, but in fact it is inside the 
shadow. Here we should use the z-fail algorithm (Heidmann, 
1991). In the z-fail algorithm, we extend the ray from the 
camera to the infinite. Starting from the pixel, those shadow 
volumes farther than the pixel are considered. When the ray 
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runs out the shadow volume, the stencil value increases one, 
otherwise, when the ray runs into the shadow volume, the 
stencil value decreases one. If the final stencil value is greater 
than zero, the corresponding pixel is inside the shadow; 
otherwise if the final stencil value is equal to zero, the pixel is 
outside the shadow. If the pixel is outside of the all shadow 
volumes, the father shadow volume is not exist and the stencil 
value keeps unchanged, that is the value is zero and the pixel is 
outside the shadow. 
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Figure 4. The z-fail algorithm 
 
Note that in the z-fail algorithm, the shadow volume must be 
closed at both ends because the stencil value is counted when 
the pixel fail the depth test. See Figure 5, if the top cap and the 
bottom cap are not added, the stencil value of the P and Q 
would be zero, but the correct value is one because they are 
both in the shadow. 
 

P

Camera

Object

Pixel
(inside)

Light source

Q
Pixel

(outside)

Additional
top cap

Additional
bottom cap

 
 

Figure 5. The front and back caps added for z-fail algorithm 
 

2.3 Comparison of z-pass and z-fail algorithm 

In the shadow volume algorithm the z-pass method has a higher 
performance than the z-fail method. But the z-pass algorithm 
fails when the shadow volume intersects the near clipping plane. 
This near clipping problem was the reason for the development 
of the z-fail technique which processes shadow volume 
fragments that fail (instead of pass) the depth test. This 
approach moves the problems from the near to the far clipping 
plane which can be handled robustly by moving the far plane to 

performance since in the z-fail case the shadow volumes must 
be closed at both ends. In this paper, we make use of the 
advantages of the both algorithm to realize the rendering of 3D 
vector data on the virtual landscape.  
 

infinity. However, this robustness comes at the expense of 

3. RENDERING 3D VECTOR DATA BASED ON THE 

The approach of rendering 3d vector data based on the theory 

) Constructing the vector polyhedra: extrude the vector data 

e polyhedra to the stencil buffer 

 the scene and raster 

he detail work flow of the approach is as the Figure 6: 

 

THEORY OF STENCIL SHADOW VOLUMES 

of stencil shadow volumes consists of three parts (Schneider, 
2007):  
 
(1
into the polyhedra according to the bounding box of the terrain 
data where the vector data lie. 
(2) Creating the mask: render th
to create a mask, which is consistent with the vertical projection 
of the vector data onto the terrain surface. 
(3) Rendering the vector: apply the mask to
the screen area covered by the vector data by using the 
appropriate stencil test method. 
 
T
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render terrain data
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Figure 6. The work flow of the approach of rendering 3d vector 

3.1 Construction of vector polyhedra 

In the first step we need to extrude the vector data geometry 

 order to minimize the high rasterization workload potentially 

data based on the theory of stencil shadow volumes 
 

into vector polyhedra that are afterwards rendered into the 
stencil buffer to generate an appropriate mask. Construction is 
started by duplicating each vertex of the vector data. One vertex 
of each of the created pairs is translated towards the geocenter, 
the remaining vertices are moved into the opposite direction. 
The group of upper and lower vertices constitutes the 
polyhedron’s top and bottom cap. The amount of translation has 
to be chosen such that the top and bottom cap are located 
completely above and below the terrain surface respectively. 
Applying the described construction the resulting polyhedron 
encloses the part of the terrain surface that is supposed to 
contain the vector data. 
 
In
caused by large polyhedra, we reduce the size of the polyhedra. 
To accomplish this, we move the top and bottom caps towards 
the terrain surface from both sides as far as possible but without 
intersecting it. In our implementation we utilize the bounding 
boxes of the quadtree cells inherent in the terrain rendering 
engine (Dai, 2004). In particular, the bounding boxes encode an 
upper and lower bound of the enclosed terrain and therefore 
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provide conservative but reasonable upper and lower bounds for 
the polyhedra caps as well. In the case of linestrips, before 
constructing the polyhedra the linestrips are needed to be 
extended to the strips according to the attribution of the data 
(for example, the width of the road), just as the Figure 7 shows. 
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Figure 7. The extension of linestrip vector data 

When constructing the polyhedra of linestrips vector data, we 
 

consider each line segment separately. The height values of the 
corresponding vertices of the top and bottom cap are the 
minimum and maximum height values of the bounding boxes 
containing the projection of the line segment. See Figure 8, 
point A, B, C, D are the vector data point, point A1, B1, C1, D1 
are the upward-moved points and A2, B2, C2, D2 are the 
downward-moved points of each vector data point, the above 
moved points construct the polyhedra of the vector data 
enclosing the terrain data. 
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Figure 8. The 2d sketch map of constructing polyhedra of 

 
 the case of polygons we use the minimum and the maximum 

.2 Creating the mask in stencil buffer 

o  that we have created the polyhedra from the vector data 

) Color, depth and stencil buffer are cleared and the terrain is 

th buffer writing is disabled, but the depth test still 

endering vector polyhedra to create the mask. 

.3 Rendering the vector 

ft r creating the mask in the stencil buffer we apply it to the 

he pseudo code of creating the mask and rendering the vector 

linestrip vector data  

In
height value of the bounding boxes enclosing the projection of 
the whole polygon. The constructed polyhedra are tesselated 
ensuring a consistent winding order with all face normals 
pointing outwards. 
 
3

N w
they can be rendered into the stencil buffer. When the 
viewpoint is inside the shadow volume or the shadow volume 
intersects the near clipping plane of the view frustum, the z-fail 
algorithm is used, otherwise the z-pass algorithm is used. The 
steps of creating the mask are as follows: 
 
(1
rendered initializing the depth buffer with the required depth 
values. 
(2) Dep
remains active. Rendering is then restricted to the stencil buffer 
only. 
(3) R The 
polyhedron’s faces are rendered using different stencil 
operations depending on whether they face towards or away 
from the camera. To this end, face culling is enabled and the 
polyhedron is rendered twice, one time with back-face culling 

enabled, the other time with front-face culling enabled. If the z-
pass method is used, because the polyhedron does not intersect 
the near clipping plane, the values in the stencil buffer are 
modified when the depth test passes. The stencil value is 
incremented for fragments belonging to front-facing polygons 
and decremented for fragments belonging to back-facing 
polygons. If the z-fail technique is applied, values in the stencil 
buffer are modified when the depth test fails. The stencil value 
is incremented for fragments belonging to back-facing polygons 
and decremented for fragments belonging to front-facing 
polygons. 
 
3

A e
scene. Therefore, we reactivate writing to the color buffer and 
activate additive blending. The stencil test is configured to pass 
only when the value in the stencil buffer does not equal zero. 
Instead of drawing a screen-sized quad to apply the mask to the 
scene, we rasterize the bounding box of the respective 
polyhedron in order to save rasterization bandwidth. This is 
performed with depth test enabled and drawing only front-faces 
in the z-pass case and with depth test disabled and drawing only 
back-faces in the z-fail case. 
 
T
using z-fail algorithm is as follows: 
 
//create the mask
glClear(GL_STENCIL_BUFFER_BIT);
glColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE );
glEnable( GL_CULL_FACE );
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glDepthFunc(GL_GEQUAL);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0);
//set the stencil buffer operation
glStencilOp(GL_KEEP, GL_KEEP,GL_INCR);
//render the back-faces of the polyhedra
glCullFace( GL_FRONT );
DrawVectorPolyhedra();
//set the stencil buffer operation
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
//render the front-faces of the polyhedra
glCullFace( GL_BACK );
DrawVectorPolyhedra();
//draw the vector data
//render the front-faces of the bounding box of the vector polyhedra
glDepthMask( GL_TRUE );
glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE );
glCullFace( GL_FRONT );
glDepthFunc(GL_GEQUAL);
//set the stencil buffer operation
glStencilFunc(GL_NOTEQUAL,0, 1);
glStencilOp( GL_KEEP, GL_KEEP, GL_KEEP );
DrawBoundingBoxofVectorPolyhedra(); 
//resume the default setting
glEnable( GL_CULL_FACE );
glCullFace( GL_BACK );
glDepthFunc(GL_LESS);
glDisable(GL_STENCIL_TEST);

 

4. 3D VECTOR DATA RENDERING EXPERIMENT 

The approach in this paper has been successfully used for the 

 

AND ANALYSIS 

rendering of 3d vector data in several areas. We test the 
algorithm on a Pentium 4 (3.0 GHz, 1GB RAM) computer with 
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windows XP SP2 operation system and NVIDIA Geforce 
8500GT graphic card. The size of the rendering window is 
1200×1000. The DEM data set consists of 14997×17556 sample 
points with the ground sample distance of 20m, and the DOM 
data set consists of 119964×140420 pixels with the resolution 
of 2.5m. The test habitation vector layer includes 8 areas of 
1208 sample points and the road vector layer includes 144 roads 
of 18800 sample points. Before rendering the vector data, the 
landscape is rendered at 60 frames per second, after the vector 
data are overlaid on the terrain, the rendering speed keeps 
unchanged, only the memory cost increases 6.3MB. Figure 9 
shows the rendering result of the habitation (semi-transparent 
yellow area) and road (red line) data on the 3d terrain landscape. 
 

 
 

Figure 9. The experiment resu

5. CONCLUSIONS 

Experiments s ow t at the presented algorithm allows real-time 

lt of rendering vector data based 
on the theory of stencil shadow volumes  

 
 

h h  
and high-quality vector data visualization as provided by other 
geometry-based methods. However, it does not suffer from their 
shortcomings, namely the expensive adaptation process and the 
increased primitive count coupled with the terrain complexity. 

In comparison to texture-based techniques that immediately 
render the vector data into a texture the method demands 
slightly more primitives to be rendered but provides superior 
quality. Interactive editing and manipulation of the vector data 
is also possible with our method. It only requires updating the 
shadow volume of the modified vector data object allowing 
interactive response. 
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