
RENDERING 3D VECTOR DATA
USING THE THEORY OF STENCIL SHADOW VOLUMES

Chenguang Dai, Yongsheng Zhang, Jingyu Yang

Zhengzhou Institute of Surveying and Mapping,

Zhengzhou, PR. China- (dai_zism, yszhang2001, jyyang)@163.com

Commission II, WG II/5

KEY WORDS: Stencil Buffer, Shadow Volume, Vector Data, Real-time Visualization, Terrain Rendering

ABSTRACT:

In geographical information systems vector data has important applications in the analysis and management of virtual landscapes.
Therefore, methods that allow combined visualization of terrain and geospatial vector data are required. Such methods have to adapt
the vector data to the terrain surface and to ensure a precise and efficient mapping. In this paper, a rendering method based on the
stencil shadow volumes theory is presented, which allows high-quality real-time overlay of vector data on virtual landscapes. The
method includes three steps which are the generation of the vector data polyhedra, creation of the mask in stencil buffer and the
application of the mask to the scene to render the vector data. The research and experiment show that our approach is a screen-space
algorithm and is of pixel-level precision. Since it does not suffer from aliasing artifacts like texture-based techniques and
independent of the complexity of the terrain data set, it can achieve good performance for the rendering of 3D vector data.

1. INTRODUCTION

In geoscience analytical vector data represents one of the main
categories managed by geoinformation systems. The vector data
is typically represented by lists of coordinates defining points,
lines, polygons, etc. These primitives are traditionally used for
describing geographic entities, for example buildings, rivers,
and vegetation or soil types. In GIS, vector data has important
applications in the analysis and management of virtual
landscapes. Therefore, methods that allow combined
visualization of terrain and geospatial vector data are required.
Such methods have to adapt the vector data to the terrain
surface and to ensure a precise and efficient mapping.

Real-time terrain rendering techniques have been extensively
studied for a long time but methods for projecting additional
vector data on a virtual landscape have gained less attention.
The few methods existing so far can basically be divided into
texture-based and geometry-based approaches. The texture-
based approach is to rasterize the vector data into a texture and
use standard texture mapping techniques to project it onto the
mesh during rendering. The geometry-based approach is to map
the vector data to 3d geometric primitives and to render them as
separate geometry with an additional offset. Both techniques
comprise a number of challenges.

Rasterization of the 2d vector data into a texture in a
preprocessing step and then rendering the terrain using standard
texture mapping implies several drawbacks. The frequently
needed combination of several layers of geo-spatial data
demands a separate texture for each data layer resulting in high
memory requirements. Multitexturing techniques have to be
applied to project the textures for different geospatial
information onto the textured terrain. What is worse, the
accuracy of the vector data is bound by the texture resolution
leading to unpleasant results when zooming in and single texels
become visible.

A texture-based approach to visualize vector data was proposed
by Kersting et al. (Kersting, 2002). Textures containing the
vector data are generated on-the-fly using p-buffers. An on-
demand texture pyramid that associates equally sized textures
with each quadtree node is used to improve visual quality when
zooming in. However, many expensive p-buffer switches have
to be performed, which leads to decreased rendering
performance. Even with more recent and efficient extensions
(e.g. framebuffer objects) each switch still requires a complete
pipeline flush. A texture-based approach is presented by
Schneider (Schneider, 2005) that also creates textures on-the-fly
in an offscreen buffer. A perspective reparameterization
adopted from perspective shadow mapping is applied taking
into account the current point-of-view.

Most 3d representations are based on a level-of-detail terrain
model which is needed to handle large terrain data sets and
whose geometry is refined according to the viewpoint. If vector
data is mapped to such a multiresolution structure, it has to be
adapted to the current level-of-detail in order to avoid rendering
artifacts. Unfortunately, this procedure leads to an increase in
the number of geometric primitives compared to the original 2d
vector representation. Furthermore, a suitable z-offset has to be
added to the created primitives during rendering in order to
avoid z-buffer stitching artifacts.

Wartell et al. (Wartell, 2003) presented an algorithm and an
associated data structure that allows rendering of polylines on
multiresolution terrain geometry. Since their system is based
upon a continuous level-of-detail terrain rendering engine, an
adaption of the polyline to the current state of geometry is
required at runtime resulting in additional computational costs.
In addition to the previously mentioned texture-based approach,
Schneider et al. also presented a geometry-based approach for
rendering engines based on static level-of-details (Schneider,
2005). The vector data geometry is mapped to each LOD in a
preprocessing step and integrated in the used quadtree ensuring
rendering of corresponding terrain and vector data LODs. Since

643

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

the number of geometric primitives that have to be created
grows with the terrain complexity, this method is not suited for
very high resolution data sets, especially for vector data
covering large areas.

In this paper, we treat the rendering of vector data on virtual
terrain as the vertical projection of the vector data on the
surface of the terrain. A rendering method based on the stencil
shadow volume theory is studied, which allows high-quality
real-time overlay of vector data on virtual landscapes. The
method includes three steps which are the generation of the
vector data polyhedra, creation of the mask in stencil buffer and
the application of the mask to the scene to render the vector
data.

The paper is structured as follows. First, we briefly introduce
the research background and review the related work. Then, in
section 2 we explain the theory of stencil shadow volumes. We
describe our approach in detail in section 3, show experiment
result in section 4 and draw conclusions in section 5.

2. THEORY OF STENCIL SHADOW VOLUMES

Shadow volumes are a technique used in 3D computer graphics
to add shadows to a rendered scene. They were first proposed
by Frank Crow in 1977 (Crow, 1977). A shadow volume is an
enclosed area of space that looks somewhat like a cone or a
pyramid. The tip of the shadow volume is the light source, the
faces of the shadow volume are determined by the outline of the
object that is casting the shadow. Any part of the scene that
falls inside the shadow volume is shadowed, any part of the
scene that falls outside the shadow volume is lit.

Light source

Shadow volume

Occlusion

Figure 1. The illustration of shadow map

The method to test whether a pixel in the screen is inside the
shadow volume or not is called shadow test. The shadow test is
often realized by using the technology of the depth buffer and
the stencil buffer, which can be divided into z-pass algorithm
and z-fail algorithm according to the light ray used in the test
(Everitt, 2002).
2.1 Z-pass algorithm

Figure 2 shows the theory of z-pass algorithm. For a pixel in the
screen, we consider the ray starting from the camera
(viewpoint). When the ray enters into the shadow volume, the
stencil value increases one, otherwise, when the ray runs out the
shadow volume, the stencil value decreases one. Finally if the
stencil value is greater than zero, it means that the
corresponding pixel is inside the shadow, otherwise if the

stencil value is equal to zero, the pixel is outside the shadow.
See Figure 2, the ray leaving the camera for point P enters into
the shadow volume of object 2, into the shadow volume of
object 1, out the shadow volume of object 2, into the shadow
volume of object 3, out the shadow volume of object 3, out the
shadow volume of object 1, the final stencil value of P is
+1+1−1+1−1−1=0, which means that the point P is outside the
shadow. Again for the point Q, the ray runs into the shadow
volume of object 2, into the shadow volume of object 1, out the
shadow volume of object 2, into the shadow volume of object 3,
and the stencil value is +1+1−1+1 =2>0, which means the point
Q is inside the shadow.

+1 +1

-1

+1 -1

-1
PQCamera

Object 1

Object 2

Object 3

Pixel (inside) Pixel (outside)

Original Stencil=0

Light source

Figure 2. The z-pass algorithm

Note that in the z-pass algorithm, if the shadow volume
intersects with the near clipping plane of the view frustum, the
additional surface must be added to the shadow volume to
ensure the correct result, the reason of which is that after
clipped by the view frustum, the shadow volume is likely to be
open. See Figure 3, if the additional cap is not added, the stencil
value will not increase when rendering the shadow volume, and
the shadow test of those points in the affected area will fail.

Light source

Camera

View frustum

Object

Affected area

Additional cap

Figure 3. The z-pass algorithm affected by the view frustum

2.2 Z-fail algorithm

If the camera (view point) is inside the shadow volume, the
performance of z-pass algorithm would fail. See Figure 4, if the
z-pass algorithm is applied, the stencil value of Q is −1+1=0,
which means Q is outside the shadow, but in fact it is inside the
shadow. Here we should use the z-fail algorithm (Heidmann,
1991). In the z-fail algorithm, we extend the ray from the
camera to the infinite. Starting from the pixel, those shadow
volumes farther than the pixel are considered. When the ray

644

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

runs out the shadow volume, the stencil value increases one,
otherwise, when the ray runs into the shadow volume, the
stencil value decreases one. If the final stencil value is greater
than zero, the corresponding pixel is inside the shadow;
otherwise if the final stencil value is equal to zero, the pixel is
outside the shadow. If the pixel is outside of the all shadow
volumes, the father shadow volume is not exist and the stencil
value keeps unchanged, that is the value is zero and the pixel is
outside the shadow.

+1

+1

Q

Camera

Object 1

Object 2

Object 3

Pixel(inside)

Original stencil=0

Light source

Figure 4. The z-fail algorithm

Note that in the z-fail algorithm, the shadow volume must be
closed at both ends because the stencil value is counted when
the pixel fail the depth test. See Figure 5, if the top cap and the
bottom cap are not added, the stencil value of the P and Q
would be zero, but the correct value is one because they are
both in the shadow.

P

Camera

Object

Pixel
(inside)

Light source

Q
Pixel

(outside)

Additional
top cap

Additional
bottom cap

Figure 5. The front and back caps added for z-fail algorithm

2.3 Comparison of z-pass and z-fail algorithm

In the shadow volume algorithm the z-pass method has a higher
performance than the z-fail method. But the z-pass algorithm
fails when the shadow volume intersects the near clipping plane.
This near clipping problem was the reason for the development
of the z-fail technique which processes shadow volume
fragments that fail (instead of pass) the depth test. This
approach moves the problems from the near to the far clipping
plane which can be handled robustly by moving the far plane to

performance since in the z-fail case the shadow volumes must
be closed at both ends. In this paper, we make use of the
advantages of the both algorithm to realize the rendering of 3D
vector data on the virtual landscape.

infinity. However, this robustness comes at the expense of

3. RENDERING 3D VECTOR DATA BASED ON THE

The approach of rendering 3d vector data based on the theory

) Constructing the vector polyhedra: extrude the vector data

e polyhedra to the stencil buffer

 the scene and raster

he detail work flow of the approach is as the Figure 6:

THEORY OF STENCIL SHADOW VOLUMES

of stencil shadow volumes consists of three parts (Schneider,
2007):

(1
into the polyhedra according to the bounding box of the terrain
data where the vector data lie.
(2) Creating the mask: render th
to create a mask, which is consistent with the vertical projection
of the vector data onto the terrain surface.
(3) Rendering the vector: apply the mask to
the screen area covered by the vector data by using the
appropriate stencil test method.

T

clear color, depth
and stencil buffer

render terrain data

disable color and
depth writes

vector data bounding
box intersects near

clipping plane?

configure z-pass
algorithm

configure z-fail
algorithm

render vector data
volume with top
and bottom cap

render vector data
volume with top
cap only

activate additive blending
activate color buffer
activate stencil test

set draw only back-faces
disable depth test

set draw only back-faces
enable depth test

render vector
bounding box

false

true

for all vector data objects

Figure 6. The work flow of the approach of rendering 3d vector

3.1 Construction of vector polyhedra

In the first step we need to extrude the vector data geometry

 order to minimize the high rasterization workload potentially

data based on the theory of stencil shadow volumes

into vector polyhedra that are afterwards rendered into the
stencil buffer to generate an appropriate mask. Construction is
started by duplicating each vertex of the vector data. One vertex
of each of the created pairs is translated towards the geocenter,
the remaining vertices are moved into the opposite direction.
The group of upper and lower vertices constitutes the
polyhedron’s top and bottom cap. The amount of translation has
to be chosen such that the top and bottom cap are located
completely above and below the terrain surface respectively.
Applying the described construction the resulting polyhedron
encloses the part of the terrain surface that is supposed to
contain the vector data.

In
caused by large polyhedra, we reduce the size of the polyhedra.
To accomplish this, we move the top and bottom caps towards
the terrain surface from both sides as far as possible but without
intersecting it. In our implementation we utilize the bounding
boxes of the quadtree cells inherent in the terrain rendering
engine (Dai, 2004). In particular, the bounding boxes encode an
upper and lower bound of the enclosed terrain and therefore

645

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

provide conservative but reasonable upper and lower bounds for
the polyhedra caps as well. In the case of linestrips, before
constructing the polyhedra the linestrips are needed to be
extended to the strips according to the attribution of the data
(for example, the width of the road), just as the Figure 7 shows.

A

B

C

D

A

B

C

D
A'

A''

B'

B''

C'

C''

D''

D'

Figure 7. The extension of linestrip vector data

When constructing the polyhedra of linestrips vector data, we

consider each line segment separately. The height values of the
corresponding vertices of the top and bottom cap are the
minimum and maximum height values of the bounding boxes
containing the projection of the line segment. See Figure 8,
point A, B, C, D are the vector data point, point A1, B1, C1, D1
are the upward-moved points and A2, B2, C2, D2 are the
downward-moved points of each vector data point, the above
moved points construct the polyhedra of the vector data
enclosing the terrain data.

terrain surface

A

A1

A2

B

B1

B2

C

C2

C1

D

D1

D2

extruded vector polyhedra

vector data point

Figure 8. The 2d sketch map of constructing polyhedra of

 the case of polygons we use the minimum and the maximum

.2 Creating the mask in stencil buffer

o that we have created the polyhedra from the vector data

) Color, depth and stencil buffer are cleared and the terrain is

th buffer writing is disabled, but the depth test still

endering vector polyhedra to create the mask.

.3 Rendering the vector

ft r creating the mask in the stencil buffer we apply it to the

he pseudo code of creating the mask and rendering the vector

linestrip vector data

In
height value of the bounding boxes enclosing the projection of
the whole polygon. The constructed polyhedra are tesselated
ensuring a consistent winding order with all face normals
pointing outwards.

3

N w
they can be rendered into the stencil buffer. When the
viewpoint is inside the shadow volume or the shadow volume
intersects the near clipping plane of the view frustum, the z-fail
algorithm is used, otherwise the z-pass algorithm is used. The
steps of creating the mask are as follows:

(1
rendered initializing the depth buffer with the required depth
values.
(2) Dep
remains active. Rendering is then restricted to the stencil buffer
only.
(3) R The
polyhedron’s faces are rendered using different stencil
operations depending on whether they face towards or away
from the camera. To this end, face culling is enabled and the
polyhedron is rendered twice, one time with back-face culling

enabled, the other time with front-face culling enabled. If the z-
pass method is used, because the polyhedron does not intersect
the near clipping plane, the values in the stencil buffer are
modified when the depth test passes. The stencil value is
incremented for fragments belonging to front-facing polygons
and decremented for fragments belonging to back-facing
polygons. If the z-fail technique is applied, values in the stencil
buffer are modified when the depth test fails. The stencil value
is incremented for fragments belonging to back-facing polygons
and decremented for fragments belonging to front-facing
polygons.

3

A e
scene. Therefore, we reactivate writing to the color buffer and
activate additive blending. The stencil test is configured to pass
only when the value in the stencil buffer does not equal zero.
Instead of drawing a screen-sized quad to apply the mask to the
scene, we rasterize the bounding box of the respective
polyhedron in order to save rasterization bandwidth. This is
performed with depth test enabled and drawing only front-faces
in the z-pass case and with depth test disabled and drawing only
back-faces in the z-fail case.

T
using z-fail algorithm is as follows:

//create the mask
glClear(GL_STENCIL_BUFFER_BIT);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glDepthFunc(GL_GEQUAL);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0);
//set the stencil buffer operation
glStencilOp(GL_KEEP, GL_KEEP,GL_INCR);
//render the back-faces of the polyhedra
glCullFace(GL_FRONT);
DrawVectorPolyhedra();
//set the stencil buffer operation
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
//render the front-faces of the polyhedra
glCullFace(GL_BACK);
DrawVectorPolyhedra();
//draw the vector data
//render the front-faces of the bounding box of the vector polyhedra
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glCullFace(GL_FRONT);
glDepthFunc(GL_GEQUAL);
//set the stencil buffer operation
glStencilFunc(GL_NOTEQUAL,0, 1);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
DrawBoundingBoxofVectorPolyhedra();
//resume the default setting
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glDepthFunc(GL_LESS);
glDisable(GL_STENCIL_TEST);

4. 3D VECTOR DATA RENDERING EXPERIMENT

The approach in this paper has been successfully used for the

AND ANALYSIS

rendering of 3d vector data in several areas. We test the
algorithm on a Pentium 4 (3.0 GHz, 1GB RAM) computer with

646

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

windows XP SP2 operation system and NVIDIA Geforce
8500GT graphic card. The size of the rendering window is
1200×1000. The DEM data set consists of 14997×17556 sample
points with the ground sample distance of 20m, and the DOM
data set consists of 119964×140420 pixels with the resolution
of 2.5m. The test habitation vector layer includes 8 areas of
1208 sample points and the road vector layer includes 144 roads
of 18800 sample points. Before rendering the vector data, the
landscape is rendered at 60 frames per second, after the vector
data are overlaid on the terrain, the rendering speed keeps
unchanged, only the memory cost increases 6.3MB. Figure 9
shows the rendering result of the habitation (semi-transparent
yellow area) and road (red line) data on the 3d terrain landscape.

Figure 9. The experiment resu

5. CONCLUSIONS

Experiments s ow t at the presented algorithm allows real-time

lt of rendering vector data based
on the theory of stencil shadow volumes

h h
and high-quality vector data visualization as provided by other
geometry-based methods. However, it does not suffer from their
shortcomings, namely the expensive adaptation process and the
increased primitive count coupled with the terrain complexity.

In comparison to texture-based techniques that immediately
render the vector data into a texture the method demands
slightly more primitives to be rendered but provides superior
quality. Interactive editing and manipulation of the vector data
is also possible with our method. It only requires updating the
shadow volume of the modified vector data object allowing
interactive response.

REFERENCES

Crow F., 1977. Shadow algorithms for computer graphics. In:
Proceedings of SIGGRAPH 1977, pp. 242–248.

Dai C., 2004. Algorithm for real-time visualization of massive
terrain dataset. Journal of computer-aided design & computer
graphics, 16(11), pp. 1603-1607.

Everitt C., 2002. Practical and robust stenciled shadow volumes
for hardware-accelerated rendering. http://developer.nvidia.com.
(accessed 15 Jan. 2008)

Heidmann T., 1991. Real shadows real time. IRIS Universe, 18,
pp. 28-31.

Kersting O., 2002. Interactive visualization of vector data in
GIS. In: Proceedings of the 10th ACM International
Symposium on Advances in GIS.

Schneider M., 2005. Real-time rendering of complex vector
data on 3d terrain models. In: Proceedings of the 11th
International conference on virtual systems and multimedia, pp.
573–582.

Schneider M., 2007. Efficient and accurate rendering of vector
data on virtual landscapes. Journal of WSCG, pp. 59-65.

Wartell Z., 2003. Rendering vector data over global multi-
resolution 3d terrain. In: Proceedings on the Symposium on
Data Visualization, pp. 213–222.

647

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

648

	1. INTRODUCTION
	2. THEORY OF STENCIL SHADOW VOLUMES
	2.1 Z-pass algorithm
	2.2 Z-fail algorithm
	2.3 Comparison of z-pass and z-fail algorithm

	3. RENDERING 3D VECTOR DATA BASED ON THE THEORY OF STENCIL SHADOW VOLUMES
	3.1 Construction of vector polyhedra
	3.2 Creating the mask in stencil buffer
	3.3 Rendering the vector

	4. 3D VECTOR DATA RENDERING EXPERIMENT AND ANALYSIS
	5. CONCLUSIONS
	REFERENCES

