
CROSS-PLATFORM ADAPTIVE GIS SYMBOLIZATION RESEARCH

SU Kehuaa, ZHU Xinyana, KONG Fanminb

aState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,Wuhan University -

skhemail@163.com, geozxy@126.net
 b Scomputer and information college, Yang-En University, FuJian -

Commission VI, WG II/6

KEY WORDS: Symbol, Symbol Virtual Machine, Virtual Machine Plug-in, Symbol Design Tools, Symbol Sharing

ABSTRACT:

This paper proposed a new method for sharing symbols between different GIS platform by using virtual machine technology, the
symbol system consist of three parts, they are symbol virtual machine, virtual machine articulated plug-in and symbol design tools.
Symbol virtual machine is a software simulated machine, it has virtual hardware, such as processor, stacks, registers, and the
corresponding instruction system, symbols are described by these instructions. symbol virtual machine is independent of any
specific GIS platform, responsible for dealing with GIS platform-independent function of symbolize; symbol virtual machine
articulated plug-in connect the symbol virtual machine with the GIS platform, so that the GIS platform can call symbol virtual
machine to do symbolize work; symbol design tools used in the production of symbols, when produce symbols we only target at
symbol virtual machine, not target at specific GIS platform, thus the symbols can be shared in all the GIS platform articulated
symbol virtual machine.

1. INTRODUCE

Cartographers and geographers use symbols on maps to
represent various geographic phenomena involving location,
distance, volume, movement, function, process, correlation,
etc[1]. These phenomena can be classified into four basic
categories: point (non-dimensional data), line (one-dimensional
data), area (two-dimensional data), and volume (three-
dimensional data). Once geographic features and data have been
selected, generalized and classified for the map, it is necessary
to choose the appropriate graphic representation or symbols for
the information. Symbols have characteristics that can be
manipulated to suit the category of data being mapped. These
characteristics are referred to as visual variables or visual
resources. Visual variables include symbol size, shape,
orientation, pattern (texture), hue (colour), and colour value
(brightness and lightness) [2].The process convert the spatial
data to map symbols and achieve visualization is called
symbolization. Map symbol plays a key role in the
symbolization, it is an important component of GIS. At present,
all GIS software in the market have achieved their own map
symbols system respectively, but these are only aim at specific
platform, do not have interoperability, often the symbols
designed for a GIS platform can not be used in another GIS
platform. In addition, sharing and integration of multi-source
GIS spatial data has become a goal, the majority GIS platform
has provided the public exchange form for the sharing space
data, but in the process of spatial information conversion
inevitably lost some information, in which loses fiercely is the
map symbol representation information[5-12]. For the above two
reasons, exactly the same spatial data in different GIS platforms
are often unable to obtain consistent representation, with the
GIS development and standardization, this will increasingly
become a serious problem. So we need a valid method to share
map symbol libraries in different GIS platform. this paper
proposed a new method to share map symbol libraries in
different GIS platform by using symbol virtual machine.

2. BASIC PRINCIPLE OF CROSS-PLATFORM
SYMBOL

In computer science, a virtual machine (VM) is a software
implementation of a machine (computer) that executes
programs like a real machine[3]. Virtual machines are separated
in two major categories, based on their use and degree of
correspondence to any real machine. A system virtual machine
provides a complete system platform which supports the
execution of a complete operating system (OS). In contrast, a
process virtual machine is designed to run a single program,
which means that it supports a single process. Virtual machine
addresses this challenge by enabling the creation of platform-
independent programs. A single virtual machine based program
can run unchanged on a wide range of computers and devices.
Compared with programs compiled for a specific hardware and
operating system, platform-independent programs written in for
virtual machine can be easier and cheaper to develop,
administer, and maintain[4]. By using virtual machine
technology we can share symbols between different GIS. The
basic principle is: When we create symbol libraries, we do not
create symbols for the special GIS platform but for the symbol
virtual machine. Because the symbol libraries does not create
for special GIS platform, if we want use this kinds of symbols
in a special GIS platform, we must implement a symbol virtual
machine for that special GIS platform, once the symbol virtual
machine has been implemented, all the symbols designed by
this method can be used in that special GIS platform. In a short
word, we share map symbol libraries in different GIS platform
by symbol virtual machine. Using the symbol virtual machine,
we screened the difference of the concrete GIS software
platform, and provide a uniform symbol interface for the GIS
symbol designers. In order convenient to implement, we can
define a public symbol virtual machine, and then for different
GIS platforms implement a symbol plug-in, which connect the
symbol with the special GIS platform. The entire symbol

751

mailto:skhemail@163.com

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

system consist in three part: symbol virtual machine, symbol
plug-in and symbols design tools.

ArcObject

Symbol plug-in

GeoStar

Symbol plug-in

MapGIS

Symbol plug-in

Symbol
Library

Load Symbol
VM

Symbol
design
tools

MapInfo
Symbol plug-in

MapObject
Symbol plug-in

Others
Symbol plug-in

Figure 1. Component of virtual machine based symbol system

3. SYMBOL MACHINE

The virtual machine design process itself is a symbol, symbols
virtual machine implementation of such procedures is the
machine, but in reality, this machine is not actually exist, it is
achieved through software simulation, it is unimaginable in the
hardware , Such as the processor, stack, such as registers, but
also with the corresponding instruction. Symbol virtual machine
can not leave the host GIS environment and the implementation
of a separate operation, it must be called to get the host GIS
implementation, it is the host GIS there are two aspects of the
Internet, on the one hand the need to host GIS spatial data
transmission symbol Virtual Machine, On the other hand
symbol virtual machine need to sign the results back to the host
GIS, this information is through the symbol of interactive data
interface and graphics rendering interface (see Figure 2), when
the space to host GIS data symbols And, it will notify the
symbol virtual machine to load the symbol, and symbols of the
interface through the spatial data transmission symbol virtual
machine, the virtual machine from the implementation of the
implementation of the engine will be loaded into memory in
order for the symbol of symbols, In the implementation of the
encounter in the course of mapping operation, the
implementation of graphics rendering engine will be passed to
the callback interface software for GIS mapping function,
thereby rendering to the graphics software for GIS mapping
devices.

Symbol VM

Symbol
library

Symbolizatio
n interface

Exe
engineLoader

Memory image
Drawing stackGlobals

area
Code
area

Stack
area

Graphics
interface

GIS platform
Symbol plugin

Spacia
l data

Graphic
device

call callback

Figure 2. Architecture of symbol virtual machine

3.1 Memory image

When a virtual machine runs a program, it needs memory to
store many things, including bytecodes and other information it
extracts from loaded symbol files, objects the program
instantiates, parameters to methods, return values, local
variables, and intermediate results of computations. The symbol
virtual machine organizes the memory it needs to execute a
program into several runtime data areas. the memory will be
divided into a number of different regions to store different
information, thus forming a specific memory image structure, in
Figure 2 symbols on the virtual machine memory image of the
description, including the overall data, symbols code, stack
areas, Mapping function parameters, including global data
storage area for the symbols in the overall process data; symbol
of the storage area code from the symbol library in order to load
the executable code symbols; stack storage area for the function
of the parameters, return values , Local variables and
intermediate results; another because of graphic rendering of
graphics interface function by the host GIS platform, to the
implementation of the callback way, the parameters of the
transmission mechanism and prepare for the virtual machine
does not function as local And therefore also need a mapping
function parameters area to support the implementation of
mapping function.

3.2 Execute engine and instruction set

The execution engine is one part of the virtual machine that can
vary in different implementations. On a virtual machine
implemented in software, the simplest kind of execution engine
just interprets the bytecodes one at a time. Another kind of
execution engine, one that is faster but requires more memory,
is a just-in-time compiler. In this scheme, the bytecodes of a
method are compiled to native machine code the first time the
method is invoked. The native machine code for the method is
then cached, so it can be re-used the next time that same
method is invoked. A third type of execution engine is an
adaptive optimizer. In this approach, the virtual machine starts
by interpreting bytecodes, but monitors the activity of the
running program and identifies the most heavily used areas of
code. As the program runs, the virtual machine compiles to
native and optimizes just these heavily used areas. The rest of
the of code, which is not heavily used, remain as bytecodes
which the virtual machine continues to interpret. This adaptive
optimization approach enables a virtual machine to spend
typically 80 to 90% of its time executing highly optimized
native code, while requiring it to compile and optimize only the
10 to 20% of the code that really matters to performance. Lastly,
on a virtual machine built on top of a chip that executes
bytecodes natively, the execution engine is actually embedded
in the chip.

Each thread of a running program has its own pc register, or
program counter, which is created when the thread is started.
The pc register is one word in size, so it can hold both a native
pointer and a returnAddress. As a thread executes a Java
method, the pc register contains the address of the current
instruction being executed by the thread. An "address" can be a
native pointer or an offset from the beginning of a method's
bytecodes. If a thread is executing a native method, the value of
the pc register is undefined.

752

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

Every instruction consists of an opcode followed by zero or one
parameters. Each opcode is one byte in size; an instruction
parameter has four bytes. A few "debugging" instructions (at
the end of the list) form an exception to these rules: they have
two or more parameters and those parameters are not always 4
bytes size.Many instructions have implied registers as operands.
This reduces the number of operands that are needed to decode
an instruction and, hence, it reduces the time needed to decode
an instruction. In several cases, the implied register is part of
the name of the opcode. For example, PUSH.aux is the name of
the opcode that stores the AUX register on the stack. This
instruction has no parameters: its parameter (aux) is implied in
the opcode name.Because of the need to carry out drawing
operations, in addition to its support generic virtual machine
instructions, there is a need to support drawing instructions. the
drawing instruction should be implement as call back function.

4. SYMBOL LIBRARY

The Symbol library is a binary file (on disk) contains a set of
symbols information. Actually it is a program that can be load
and execute by the symbol virtual machine, all the symbols in
the library are described by the virtual machine’s instruction (or
byte code), each symbol in the symbol library has a series of
instructions , possibly also contain data. The structure of the
symbol library is similar to the memory image layout(shown in
figure 2), it consists of the "head information", and the code and
data sections, but the heap and stack section are not stored in
the binary file, since the symbol virtual machine can build the
from information in the "head information" section. Once the
symbol library is loaded by the symbol virtual machine, it can
be executed by the execute engine.

5. SYMBOL DESIGN TOOLS

The symbol design tools consist in four components:
(1).symbol design language: It is a special programming
language used to create symbol libraries source, called
vmSymol Language. The vmSymol language is similar to the C
programming language, but it exclude many complex concept
of C, you can think it is a simplified C programming language.
At the same time, the Language added many predefined
functions for symbol design.
(2).symbol complier: It is the compiler for the vmSymbol
Language. The compiler takes a source code and converts it to
instruction (or bytecode), which is subsequently executed on
symbol virtual machine. The compiled result is what we
common called symbol library.
(3).symbol IDE(Integrated Development Environment): It
refers to the vmSymbol IDE, including the source editor, the
compiler, the debugger and the symbol preview tools. The IDE
support for syntax styling, error indicators, code completion and
call tips. The user can design the symbol libraries inside it very
conveniently.

6. APPLICATION EXAMPLE

Virtual machines based symbols system has been used in Fujian
electric management and service system. In this system, there
are tow places need electric map: one is the in the information
management subsystem which use ArcGIS to show electric map
and run on desktop computer, another is in the information
collection subsystem, It's self-development embedded GIS

System run on PDA. They all use a same virtual machine based
symbols. The following is the system snap:

Figure 3. example in ArcGIS

Figure 4. example in PocketPC

7. CONSLUSION

Virtual machine based GIS symbols system using symbol
virtual machine screened the difference of the concrete GIS
platform, and provide a uniform symbol interface for the GIS
symbols designer, thus the symbols made by this method can be
used in different GIS platforms, and achieve the same
representation results. Practice proves that this is a practical
solution.

REFERENCES

[1]http://atlas.nrcan.gc.ca/site/english/learningresources/carto_c
orner/map_content_carto_symbology.html

[2]SuperMap Vector Map Symbol Library Exchange Format
2.0, Beijing Super Map GIS Lit. 1999.12.
http://www.gischina.com/maindoc/simchin/gisforum/format/vec
tor006.htm, (Chinese)

[3]Tim Lindholm, Frank Yellin, Java(TM) Virtual Machine
Specification, The (2nd Edition) (The Java Series)[M],1999,p1-
1034

[4]Bill Blunden, Virtual Machine Design and Implementation
in C/C++[M],Wordware Publishing,2002:p1-296

753

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

[5] Philip J. Koopman, Stack Computers,
http://www.ece.cmu.edu/~koopman/stack_computers/index.htm
l[EB], 2008-4-15

[6]Zhong Ershung, etc, Comment of GIS Multi-source Data
Integrate Model. [C], Proceedings of Geoinformatics
99?Conference, Shenzhen, 1999.8, pp286-290,(Chinese)

[7]Song Guanfu, etc., Research for Seamless Integration of
Multi-source Spatialdata, [C], Proceedings of Geoinformatics
99?Conference, Shenzhen, 1999.8, pp372-377, (Chinese)
Wang Jun, etc, Chinese National Standard Electric Map Symbol
System, 2002, (Chinese)

[8]Ma Yaofeng, A STUDY ON THE SYMBOLIC
CONSITITUTION ELEMENTS AND ITS DESIGNING
MODELS, [J]. ACTA GEODAETICA et CARTOGRAPHICA
SINICA, 1995.11, Vol.24, No.4. pp309-315. (Chinese)

[9]Bai Dianyi, New Trend of Map Symbol Standardization, [J],
Chinese Standardization, 1997, No.8, (Chinese)
Nin Sanjin, Trend of Map Symbol, [J], MAP, 1997, No.1,
(Chinese),

[10]Wang Wei, etc. Designing and Implementation of Map
Symbol Database Based on COM. [J], GEOMATICS AND
INFORMATION SCIENCE OF WUHAN UNIVERSITY,
2002.Vol.27 No.3, pp296-230, (Chinese)

[11]Zhao Hongjiang, Yin Ganhua, The Design and Realization
of all-purpose Map Symbol Base, [J],Bulletin of Surveying and
Mapping, 2002,No.4. (Chinese)

[12]Yang Chuncheng, etc., Designing and Implementation of
Map Symbol making tool based on OOP technique, Science of
Surveying & Mapping, Vol. 27, 2002(1), 50-53, (Chinese)

ACKNOWLEDGEMENTS

The work described in this paper is supported by National
Science and Technology Supporting Program of China (No:
2006BAB10B03), and supported by Hubei Natural Science
Fund for Innovation groups projects (No: 2006ABC010).

754

	1. INTRODUCE
	2. BASIC PRINCIPLE OF CROSS-PLATFORM SYMBOL
	3. SYMBOL MACHINE
	3.1 Memory image
	3.2 Execute engine and instruction set

	4. SYMBOL LIBRARY
	5. SYMBOL DESIGN TOOLS
	6. APPLICATION EXAMPLE
	7. CONSLUSION
	REFERENCES
	ACKNOWLEDGEMENTS

