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ABSTRACT 

 

Studying the behavior of some slow phenomena, such as crustal or continental deformations, it is necessary to consider time series 

data, with a sufficient numerousness that depends on their characteristics. Time series analysis is a delicate step; in order to obtain a 

correct significance and validity it is necessary to use an internal coherent outlier free dataset. It is necessary to analyze the data in 

order to find any possible outliers and to verify inner coherence. Some interesting features about outlier removal, research of zero 

degree unknown discontinuities and their evaluations can be provided applying the forward search method. In this case, a modified 

version has been developed, starting from the more general FS technique. The method has been applied to artificial data which are 

created in order to know the exact entity of the introduced discontinuities with the aim of simulating a time series solution that 

originates from GPS permanent stations networks. 

Simulated data were analyzed considering a period of 100 epochs and with a repeatability of 100. Experiments with different values 

of the ratio between the imposed jump in the series and its noise level were performed with the aim of firstly defining a percentage of 

positive results based on where the jumps are found and how good their entity is evaluated, and secondly in order to calculate the 

repeatability. The algorithms have been implemented in a automatic procedure, developed in R language. This work shows some of 

the obtained results and gives a statistical interpretation. 

 

 

1. INTRODUCTION 

1.1 Time series analysis in geodesy 

Time series analysis is a useful procedure that can be used in 

any spatial geodesy technique and it can be applied both before 

and after raw data treatment with different aims. Datum 

definition is a first application in the geodetic field. Nowadays, 

it is considered 4-dimensional because the temporal coordinate 

is included in its definition. This is the direct consequence of 

the use of points external to the terrestrial surface and therefore 

are not located on the Earth and thanks to the high accuracy of 

the results. This condition is not compatible with the initial 

hypothesis where the fitting considers a static reference system. 

Nowadays, this hypothesis is a little truthful, because the 

deformations accumulated by the vertexes of the datum over 

these last few years have to be considered.  

The main geodetic application of time series analysis is devoted 

to the analysis of deformations, where the aim is to measure the 

movements in the time of some points of interest on the Earth 

(landslide or crustal deformations). Another purpose of time 

series analysis is to estimate the accuracy of the results. For 

example, in the case of GPS measurements, the variance matrix 

of solution, which is estimated using the propagation law, is 

under-estimated. This derives from the initial hypothesis about 

the baseline being correct. It is possible to obtain a more 

credible variance value, considering a direct estimation of the 

residuals, using the repeatability concept with  an appropriate 

time series analysis. 

A complete time series analysis in the geodetic field is 

composed of three consecutive steps: 

1.  search for and detection of the discontinuities; 

2. defining an adapted linear model devoted to modeling the 

movements of the vertexes, to remove the linear trend; 

3. frequency  analysis of the cyclic component. 

The first and the second steps are important to define the third, 

because the object of the frequency analysis has to respect a 

fundamental and restrictive hypothesis: stationarity. In short, 

some statistical proprieties of the series (i.e. average and 

variance) must not change in time. In this way, the estimation is 

consistent and it has the same statistical proprieties as a single 

temporal sample. Steps 1 and 2 are fundamental because they 

permit the discontinuities and the linear trend to be identify and 

remove 

We consider “discontinuity of null degree” or level shift, any 

behavior which is the direct consequence of an immediate 

change of the measurement condition. This change is identified 

with a constant value in the time series. For example, GPS 

antenna substitution in a permanent station site; this causes a 

different localization of the phase center with respect the point 

of interest. 

Nowadays the diffusion process of GPS permanent stations has 

not been followed by an adequate structure and management. 

There are few cases, in the world, where an appropriate 

structure, such as EUREF and IGS service, is available. In these 

cases, periodical solutions and  significant transformations are 

published. The problem is that these publications could be 

incomplete due to human error. This is the main reason why 

research and detection of the jumps in the time series of GPS 

coordinates are important. The general tendency, at present, is 

to have an automatic and efficient method which allows the 

network adjustment to be made, in a short time.  
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2. FORWARD SEARCH METHOD 

2.1 Basic concept 

If the number of outliers is greater than 20% of the 

observations, a traditional robust estimator (i.e Huber, BIBER) 

cannot be used. Another possible solution must be found. A 

particular method, which is often used in the economic field, 

but for some years, has been used in the geomatic field is here 

described. Most outlier detection methods attempt to divide the 

data into two parts, a larger “cleaned” part and the outlier. The 

cleaned data are then used for parameter estimation. Forward 

Search (FS) can be considered as a hybrid method which 

permits to pass from an LMS solution (robust approach) to an 

LS solution (classical approach). 

The main concept is to employ a subsample m, extracted from 

an original dataset. This subsample is considered to be without 

outliers. This subsample is employed by the LMS to estimate 

the unknown parameters. The coefficients estimated in this way 

are applied to all the observations, through the Least Squares 

method, to evaluate the residual value of each observation. 

The absolute values of the residuals are analyzed and  m+1 

observations with smallest residuals are identified. This group 

of observations is employed to calculate the new parameters, by 

means of the LMS. The loop continues until all the observations 

have been involved; at the end of the process, a LS solution is 

obtained. 

This method can be represented as in the following flowchart: 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sketch of the forward search   

 

The new contribution of this method concerns variability 

because it allows one to pass from LMS to LS, and permits a 

continuous monitoring, epoch by epoch, of some parameters 

(residual, Cook‘s distances, coefficient estimates, t-statistic, 

etc). The purpose of this method is to divide the possible 

"clusters" into the dataset. It is possible to divide the data into 

"cleaned", which are employed to valuate the unknown 

coefficients and "outliers."   

In the case where the values of the model parameters are 

known, it is not difficult to identify the possible outliers, 

because their relative observations have large residuals. The 

main difficulty arises when the outliers are included in the 

dataset used to estimate the parameters, which can contain some 

errors.   

Many methods devoted to outlier detection try to divide the 

dataset into two parts: the main part is “cleaned” and the rest is 

the “outlier”.  

The method starts using the LMS method, which is based on the 

estimation of parameters 
*
px , and the median of the squared  

residuals, that is )ˆ(ˆ2 xvi , is minimized. 

*
px  minimizes the scaled estimated: 
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][ xe k  is the kth ordered square of the residual. 

Rousseuw defines a technique devoted to creating a subsample 

of p-dimension (APPENDIX A). The Forward Search (FS) uses 

this approach to define a subsample of parameters. A number of 

subsample elements equal to m, with a rank of A is usually 

defined and the n-m element is left to be tested. Some methods, 

such as LMS, use an augmented subsample to do the search, for 

example ns = m +1 or ns = m + 2. 

The disadvantage of this is that increasing the number of 

subsample elements also increases the probability that it will 

contain outliers. In the case of FS, we start from ns = m, and we 

continue unit by unit, adding one observation at a  time, until 

we obtain the condition ns = n. 

During these n – m step, we can control the variation of some 

statistical parameter as values of residuals, Cook’s distance, t-

statistic. In particular, we can detect which new observation 

creates an immediate variation in the monitored parameters. 

If we are using observations without any outliers, the observed 

statistical parameters should be constant. 

In short, the Forward Search method is composed of three steps: 

• Choice of the initial subsample; 

• Adding observations at each epoch; 

• Monitoring the statistical parameters. 

 

2.1.1 Step 1: Choice of the initial subsample: If the model 

contains m parameters, the forward search algorithm starts with 

the selection of a subset of m units. Observations in this subset 

should be outlier free. Let Z=(X, y), so that Z is n x ( m+1). If n 

is moderate and m << n, the choice of the initial subset can be 

performed by exhaustive enumeration of all 
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i Se ι , for i =1, ....., n, and med is the integer part of 

(n+m+1)/2. 

 

If 








m

n
 is too large, we use some larger numbers of samples, 

for example 1000. 

 

2.1.2 Step 2: Adding observations at each epoch: Given a 

subset of dimension q ≥ m, the forward search moves to 

dimension q+1 by selecting the q+1 units with the smallest 

squared Least Squares residuals, the units  being chosen by 

ordering all squared residuals. The forward search estimator 

FSβ̂  is defined as a collection of Least Squares estimators in 

each step of the forward search; that is: 

 

 

( )** ˆ,......,ˆˆ
npFS βββ =       (3) 

 

 

In most moves  from q to q+1 just one new unit joins the subset. 

It may also happen that two or more units join 
)(

*
q

S as one or 

more leave. At the next step the remaining outlier in the cluster 

seem less outlying and therefore several may be included at 

once. Obviously, several other elements therefore have to leave 

the subsample. 

The method in not sensitive to the method used to select an 

initial subset, provided unmasked outliers are not included at 

the start. What is important in the FS procedure is that the 

initial subsample is either free of outliers or contains unmasked 

outliers which are immediately removed by the forward 

procedure. 

 

2.1.3 Step 3: Monitoring of the statistical parameter:  Step 

2 is repeated until all units are included in the subsample. If just 

one observation enters 
)(

*
q

S at each move, the algorithm 

provides an ordering of the data according to the specified null 

model, with observations furthest from it joining the subset at 

the least stages of the procedure. 

The estimate of σ2 does not remain constant during the forward 

search as observations that have small residuals are sequentially 

selected. Thus, even in the absence of outliers, the residual 

mean square estimate 
222

)(
*

)(
*

vvv
nm SS

=<  for m < n. 

 

 

3. PROGRESSIVE FORWARD SEARCH APPROACH 

3.1 Choice of the initial subsample 

Starting from the original forward search approach, we have 

implemented some specific parts, to characterize this algorithm 

when a time series has to be analyzed. 

The choose of the initial subset is made with a numerical 

method which is devoted to identifying a small “cleaned” 

subset, in all the data. The significance value of the test should 

be low, in order to avoid an under-estimation of the model 

accuracy, which causes greater sensibility of the method with 

respect to the noise, in particular during the first step of the 

analysis. A satisfactory value of significance α equal to 0.3% 

from practical test, has been defined. Residual value (σ*), 

(Rousseeuw et al., 1987), defined with respect to the LMS 

model, through a robust approach which starts from a  

preliminary estimation of the residual S0, is employed to define 

the weight matrix ωI . This is possible if the following equations 

are used: 
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where n = number of elements used 

 ri = residual of the element i of the series 

 p =  number of estimated coefficient of the 

model 

med = median operator 

The selection of the cluster element can now be done, using the 

Neyman setting: 

 

 

3
*

≤
σ

ir                                         (5) 

 

 

3.2 Monitoring of the statistical parameters 

Using the ratio between the measured value (Sr) and the 

predicted value (Sp), it is possible to discriminate if an element 

belongs to the current cluster or not. Usually a multi-linear 

regression is used (see Figure 2) 

The sensibility of the test can be calibrated in order to the adopt 

a confidence interval, for example 95%. In this way, the 

discontinuities are identified as repeated elements of the series 
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with residuals greater than the forecasted values. The 

employment of a model derived from a restricted number of 

elements leads to having an under estimation of the accuracy. In 

the case where the accuracy is lower than the general noise of 

the series, the method is excessively sensible to the noise.  

If the solution is considered to belong to the  previous cluster,  a 

new model is estimated, considering this element and adopting 

LS method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Monitoring of the statistical parameters   

 

This procedure allows a model to be estimated, increasing the 

redundancy. A checked dataset is used to define this new 

model. At the end of cluster identification, the estimation jump 

procedure can start.  A single model of regression is estimated 

for each identified cluster. When the different clusters are 

detected, the first and the last value of the regression model are 

saved. In this way the jumps are calculated as the difference 

between the values assumed by the model in the two different 

consecutive clusters. This is shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Definition of the discontinuities 

 

 

4. ANALYSIS OF THE RESULTS 

4.1 Test settings 

The statistical approach involved in our analysis is necessary 

because of the kind of time series and the noise; the test was 

carried out considering several artificial time series with the 

analogue behavior of the real GPS permanent station data. 

In this way, a known jump entity has been considered in the 

time series as a constant value in a known epoch. This is a great 

advantage because it allows to be sure about the time and the 

entity of the discontinuity. 

Different jump values have been considered in order to evaluate 

the relationship between the sensibility of the method and the 

noise level. Different jump values were considered for each 

level of noise. These values were increased by 10% per time, 

until reaching at 4σ. Each test has been repeated 100 times, 

with same jump/noise ratio. The results obtained using the 

“progressive forward search” are described in the follow parts. 

 

4.2 First test: α = 99.7% 

The following parameters were considered in each test: jump 

value, epoch and estimated value.  

All correct identified jumps are flagged as “correct”, 

considering a tolerance equal to +/- 4 epochs with respect to 

where the jump was really located. Positive results are obtained 

(> 50% of tentative) considering a ratio jump/noise equal to a 

2.5σ, as shown in figure 4. 

The quality of the jump estimation is described in figure 5, 

where the ratio between the real value and the estimated value is 

identified, but only in the “correct” cases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Percentage of success    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Ratio between the estimated value and the real jump 

values 
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A average trend is detectable in figure 5, with 10% of difference 

with respect to the real value. If the jump value increases, there 

are more correct identifications. This aspect permits the 

estimation accuracy to be improved about 20-35% of the real 

value of the jump. This improvement starts when the jump/noise 

ratio is equal to 2.5σ. 

 

4.3 First test: α = 95% 

After the first test, we considered a significance level equal to 

4.6%, considering the right term in [5] equal to 2. The results of 

this test are described in figures 6 and 7.  

In this case the total number of “successes” decrease with 

respect to the total number of tests carried out. On the other 

hand, the accuracy of the estimation is still the same. 

Time series analysis is an important step because it allows 

undocumented anomalies to be detected eventually. When the 

jumps are documented, their values are unknown and it is not 

always easy to estimate them due to the nature of the jump. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Percentage of success   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Ratio between the estimated value and the real jump 

values 

 

 

5. CONCLUSION 

Analysing the forward search method it is possible to denote 

that the choice of the initial subset is a critical step. It is very 

important to define a subset which significantly describes the 

population. This is one of the main characteristics of robust 

statistics. 

The size definition of the subset has to respect some constrains, 

which are apparently contrasting. In fact the subset has to be 

sufficiently small but also significantly large, in order to be 

significant from the statistical point of view.  The minimum 

temporal distance between two consecutive discontinuities is 

another important discriminating factor. The success of the 

progressive forward search depends on the quality of the model 

used to describe the behaviour of the time series. 

For these reasons, it is necessary to adopt a simplified priori 

hypothesis about the model employed, which in the geodetic 

case can be defined using polynomial and trigonometric terms. 

In a  multi-linear model the cyclic component is considered to 

be known, therefore it is not included in the unknown terms. 

The use of synthetic data allows to be analyzed more easily the 

algorithm of the progressive forward search, the advantages and 

disadvantages to be identified and some other techniques to be 

selected that, jointed together with the forward search, could 

create a good procedure devoted to outlier detection. 

The statistical approaches are not unambiguous, because there 

are several parameters (objective function, discriminating 

factor, etc) which can have different effects on the final 

estimation. The analysis of a synthetic set assumes an important 

role because it permits the contribution of the single parameter 

in the algorithm to be defined. Using the progressive forward 

search it is possible to detect the discontinuities with a good 

level of success (>60%) , if the jump/noise ratio is greater than 

1.5-2σ. 
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APPENDIX A. Least Median of Squares approaches 

 

The main idea is to define a robust estimator, using the median 

value and with a high breakdown point. Rousseuw proposes 

minimising the median of the squared residuals (LMS) using 

one of Hampel’s ideas.  
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The Least Median of Squares is equal to: 

 

 

))(min( 2
ivmed      (6) 

 

 

The LMS estimate is equivalent to linear transformations of the 

design matrix and it has a breakdown point equal to 50%. One 

disadvantage is its poor asymptotic efficiency, that is, the 

dispersion of the estimator around the expected value should be 

small. 

There are two different approaches that can give us the solution 

of the LMS estimator: the combinatorial method and the 

resampling algorithm. 

Let (ai,j, li) be a given complete dataset for i = 1,…, n and j = 

1,…, m. The aim is to estimate the solution x, while obtaining 

the minimum value of the objective function )( 2
ivmed . The 

number of unknown parameters are described by m instead of q 

and (q ≥ m) is the number of data points used to define the 

design matrix A.  

The total number of subsamples, without repletion, that can be 

created is: 
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In the first approach, for each subsample we can compute an LS 

estimate, defining the residuals and calculating the )( 2
ivmed . 

The jth subsample which provides the smallest median value is 

the solution x, where the objective function is minimum. This 

algorithm is not always applicable. The second one is, on the 

other hand, a reasonable method.  

Using the resampling algorithm, it is possible to set the number 

of subsamples in advance, instead of calculating all the 

subsamples. Rousseuw chose the number of subsample (ns) so 

as to have the probability α of at least one of the subsamples of 

being “good”. If we denote the fraction of bad observation in a 

sample with ε, a subsample is good if it consists of q “good” 

observations. Assuming that ns/q is large, the probability α is 

equal to: 

 

 

nsq ))1(1(1 εα −−−=     (8) 

 

 

This number is almost equal to 99% if ns ≈ 4,6⋅2q. It is quite 

interesting to see that the probability  α is independent of the 

number of observations n, but depends only on the number of 

subsamples and the number of observations that belong to a 

subsample. 

 

 

 

The choice of q is variable. It is in fact possible to have: 

- q = m, which represents the case where the number 

of observations chosen for a subsample is equal to 

the number of unknown parameters 

- q > m, which represents the case where the number 

of observations extracted to create the subsample is 

larger than the number of unknown parameters. 

Aktinson and Weisberg have shown that the results 

of the resampling algorithm using q = m are very 

“rough” if n is small compared to m. Adopting q > 

m seems to produce better results in these cases, but 

the number of systems of normal equations to be 

solved increases quickly. Other authors have 

demonstrated that using q = m+1, it is always 

possible to find the absolute minimum of the LMS 

estimator, using of the combinatorial approach.  
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