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ABSTRACT: 
 
A new photogrammetric load chain has been developed for the ADS40 pushbroom sensor focusing on parallel computation and 
interactive image processing. It allows image correction and rectification at load time, useful as well for interactive work for the 
generation of image products. The performance needed to fulfill these goals has only come with the move to multicore general 
purpose computers and programmable graphics cards.   A flexible framework is needed that encourages data parallel design.  A 
programming model called “stream processing” has been the approach taken by many when developing parallel libraries.  In this 
paper we explore the stream processing model and how it applies to an ADS40 work flow.  We look at how the model will apply to 
both general purpose computers and programmable graphics cards. 
 
 

                                                                 
1  Corresponding author. 

1. .INTRODUCTION 

Early photogrammetric and remote sensing image processing 
consisted of a sequence of separate processing steps; with each 
step taking data from a storage device, processing, and 
returning the data to the storage device. The visualization of the 
result was a separate step, which did nothing more than to draw 
the image to an output device. With the introduction of 
interactive workstations, it became clear that the visualization 
would benefit from real-time corrections of the current image 
data (image patch). This inspired the idea of a configurable 
“image load chain”, which applies single pixel and 
neighbourhood operations (such as contrast stretch or image 
sharpening) “on the fly” whenever an image patch is loaded. 
The same load chain is also useful for operations on complete 
images by making separate pre-processing operations obsolete, 
with the additional benefit of reduced storage space. Higher-
level operations such as image rectification, while chainable, 
have not been considered for interactive work at this time. They 
have however, been introduced into specific processing steps 
such as image matching. 
 
At the time the first version of the Leica Geosystems Airborne 
Digital Scanner (ADS40) processing flow (GPro) was created, 
contemporary computing power made it impractical to set up a 
complete load chain. The biggest problem was the complexity 
of the sensor model for an airborne pushbroom sensor (with its 
short term orientation variations). Consequently two product 
levels were created on disk: “L1” (plane-rectified) for 
stereoscopic work and “L2” (ortho-rectified) as an intermediate 
product for ortho-mosaics and remote sensing applications. A 
radiometric load chain was implemented into the rectifiers and 
the viewer. 
 

The main goal of a new ADS processing package was to 
eliminate the need of saving intermediate results and to apply a 
completely configurable set of low- and high-level image 
corrections on-the-fly. For example, a complete load chain for 
stereo-viewing RGB (Red, Green, Blue) or FCIR(False Colour 
Infra-red) L1 would apply the following processing steps 
separately for each stereo partner: 
 

• decompress image patch into an input cache 
• plane-rectify patch to a three-band image 
• apply local automatic or user-defined radiometric 

stretch 
• put into output cache. 

 
In a more complex example, such as the production of a four-
band remote sensing ortho-image, the processing steps could 
look like this: 
 

• decompress image patch into an input cache  
• apply  additional sensor calibration  
• convert to an at-sensor radiance image 
• apply model-based atmospheric correction 
• convert to a ground reflectance image 
• apply model-based BRDF (Bidirectional Reflectance 

Distribution Function) correction 
• ortho-rectify to four band image 
• put into output cache. 

 
Most load chain steps require parameters. These must be either 
supplied (e.g. sensor calibration),  extracted from the flight 
data (e.g. exterior orientation) or extracted from the image in a 
pre-processing step (e.g. radiometric statistics). 
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One critical point in creating products from digital high 
resolution images is the processing time. This performance 
problem can be partially overcome by using modern multi-core 
CPUs and multi-CPU computers. Further improvements in 
throughput can also be achieved by distributing tasks in a 
computing cluster.  
 
All the more critical is the performance in a viewer application 
- where the latency from patch request to patch display has to 
be minimal. Even with the use of multi-core/multi-CPU 
solutions, the processing latency can not be reduced to a 
reasonable value if rectification is included in the load chain. 
Massively higher performance can only be achieved with 
special acceleration hardware. Although many hardware 
solutions are cost prohibitive, the use of advanced consumer-
grade GPUs (Graphics Processing Units – aka video cards) has 
the optimal mix of high computing performance and low cost. 
 
 

2.  DEFINITION 

Throughout this paper, the expression “load chain” is used for a 
special image processing chain, with the following 
characteristics: 

• the processing is driven from the output side by a 
request for an  image region and a processing level 

• the load chain determines the input area and the 
processing kernels to apply 

• input data is buffered in one or more input caches 
• processing is done by one or more kernels 
• kernels are either chained directly or use a cache layer 

in-between 
• the output data is placed in an output cache, from 

where the requesting procedure gets the result 
 
 

3.  STREAM PROCESSING 

In the past few years consumer level processing units have 
moved from a single all powerful unit to multiple units.  The 
reason has been the inability to continue the exponential leaps 
in processing power using a single processing unit.  This 
change is causing software to become more parallel aware, and 
is changing the approach software developers take when 
solving a problem.  
 
One way to solve the parallel programming problem is to use a 
stream processing model.  In the stream processing model 
complex programs, called kernels, operate on a collection of 
data sets or streams.  These streams are organized in such a 
way that any number of kernels can execute in parallel on 
different areas of the streams.  The key goal of the stream 
model is to limit the need for a large amount of synchronization 
between each running kernel, which allows for efficient use of 
the processing hardware.  The forerunner to the stream 
programming model is the Single Instruction Multiple Data 
(SIMD) model.  In this model a single instruction is performed 
on a large set of data all at once.  Most modern CPUs provide 
some sort of SIMD instruction set, yet compilers have difficulty 
using the instructions because of the way current software is 
designed.  The move to a stream processing model allows for 
both easier use of SIMD instructions and more specialized 
hardware such as GPUs  and FPGAs (Field-Programmable 
Gate Arrays). 
 

In the stream processing model a large amount of data is first 
loaded into a fast storage area and a kernel is then called on 
each element in that data.  The maximum number of kernels as 
possible are run to efficiently use the processing units provided 
in the hardware.  One of the big advantages of the design is 
that it allows for good scaling to newer hardware (as adding 
more processing units will allow more kernels to run). 
 
The stream processing model fits nicely with how GPUs work.  
Most GPU architectures have a large number of processing 
units combined with a high speed memory system.  Each 
processing unit is designed to run the same program, which can 
be loaded and unloaded before and after each run.  The 
incoming data is broken into equal chunks and passed to each of 
the units to process.  For example, the NVIDIA 8800GTX  
contains 16 multiprocessing units each containing 8 simple 
processors for a total of 128 processing units.  Up to 6 GPUs 
can be attached to a single motherboard, giving the GPU system 
a large amount of processing power when compared to current 
CPU architectures (which are at four cores and two sockets per 
motherboard for consumer grade hardware). 
 
The disadvantage of the GPU architecture is that it does not 
have direct access to data from disk and relies on the CPU 
system to load new data into its main memory.  This data load 
is an extra set up cost that is ideally amortized by the 
processing advantages that GPUs have over CPU architectures.  
An additional drawback with this architecture is that most GPU 
programming APIs have been designed around graphics 
programming, and general purpose programming has 
historically needed to be fit into the graphics programming 
model.  Recently a number of newer APIs have been 
developed with general purpose computing in mind.  Both 
NVIDIA (with their CUDA programming language) and 
AMD/ATI (with their CTM programming language) have 
enabled an easier fit for general purpose programming. 
 
With the recent movement of CPUs to more and more 
processing cores, the stream processing model is now quite 
usable on a pure CPU platform.  The difficulty now is to 
provide programmers with a way to take advantage of the more 
parallel architecture.  OpenMP was created to help alleviate 
this difficulty of writing parallel algorithms on multipurpose 
CPUs.  OpenMP provides the management framework required 
for running a program on multiple processing units.  The 
programmer now only needs to organize the data in the correct 
way to allow for good parallelism. 
 
 

4.  LOAD CHAIN 

From the beginning of our load chain design we had decided to 
follow the stream processing model to take advantage of GPUs 
as well as multicore CPUs.  We separated the design into three 
main areas: caches, kernels, and control.  Caches would be the 
backbone of the system providing high speed access to the data.  
Kernels would be the computational components which could 
run on both CPU and GPU systems.  The control component 
would be comprised of a management layer for synchronization 
and an I/O layer which would allow for offloading file reads. 
The structure of the load chain follows a fairly simple design 
where data moves into a cache, gets processed by a set of 
kernels, and then is written into another cache.  An output 
cache can have any number of input caches, but each input 
cache can only have at most one output cache.  This restriction 
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is needed to reduce the amount of synchronization that would 
be needed between caches.  
 
To support both a CPU and GPU based load chain we needed to 
define caches that work on either system.  Since GPUs rely on 
the CPU for data, GPU caches can only load data from other 
CPU or GPU caches.  CPU caches have no restriction and can 
be loaded from a file as well as a CPU or GPU cache.  
Transfers between CPU and GPU caches need to be minimized 
as those transfers are relatively slow.  Once data is transferred 
onto the GPU it should remain there until the final result is 
computed. 
 
Kernels are the computational components of the load chain and 
perform a single operation on data in a cache.  Any number of 
kernels can be added to a cache and the kernels will be run in 
series starting with the first kernel added to the cache.  Each 
kernel will be run on as many processing units that are available.  
Once all kernels have run on a specific cache, control is passed 
up to the next cache in the chain and its kernels are then run.  
This continues until all caches in the chain are processed and 
the resulting data is passed to the user. 
 
 

5.  CACHING 

Considering that the stream processing model is centred on the 
management of data, a well designed caching system will be 
critical for the success of any processing library.  The main 
design goal for the caching system will be to maximize data 
throughput.  We will require quick access to any data in the 
cache and access to that data will need to be thread safe.  An 
asynchronous update mechanism will also be needed to allow 
any portion of the cache to be loaded from disk while a separate 
area is being processed.  Two main caching methods are being 
considered: ‘least recently used’ and ‘toroidal’. 
 
The ‘least recent used’ (LRU) cache is a well known design 
where the cache uses the last access time for an area to 
determine whether that area should be kept in the cache.   
Areas that are accessed often will generally be kept in the cache 
while areas that aren't accessed frequently will be removed.    
In some situations LRU caches provide good performance, but 
they have a number of problems.  Neighbouring areas in image 
space are not necessarily neighbouring in the cache, so access 
to image neighbours can be slow.  Additionally most image 
manipulation kernels will be fairly consistent in accessing all 
the data in the image the same number of times.  All image 
areas therefore have similar priority in the cache, and will 
generally be used and then removed from the cache removing 
most of the benefits of the LRU design. 
 
Toroidal caches take a different approach in that they provide 
good localized accessed to a specific area of an image.  
Toroidal caches could be viewed as a double ring buffer where 
the address of a specific pixel in the cache wraps based on the 
modulus of the dimensions of the cache.  So for a cache with 
dimensions of 1024 wide and 1024 high, a pixel at line 25000 
and sample 1320 would be at row 424 (25000 modulus 1024) 
and column 296 (1320 modulus 1024) in the cache.  As the 
cache is moved, data at the boundaries of the cache are replaced 
with new data from disk.   When the cache is move to the right, 
new data is loaded on the left, and when the cache is moved 
down new data is loaded at the top.  The advantages of the 
toroidal cache are that it provides good neighbourhood access, 
since all data is stored contiguously in the cache, and 

neighbouring pixels are generally located next to the current 
pixel.  Since memory areas are fixed, data loads into and out of 
the cache are well optimized.  Toroidal caches also fit very 
well into GPU architectures, as GPUs provide hardware support 
for wrapping address modes. 
 
 

 

 
Figure 1: Moving a toroidal cache up and to the right 

The other key to providing a high speed caching system is 
having a way to asynchronously update the cache.  The 
approach we have taken is to have all disk reads preformed in a 
separate thread.  The cache will send messages to this thread to 
have certain sections of the cache loaded.  Once the loader 
thread completes its work it signals to the load chain that the 
new data is ready for processing.  With an intelligent read 
ahead algorithm the next data to be processed is being loaded 
while the current data is processed.  This keeps the load chain 
from stalling, which provides large performance benefits.  
Table 1 shows the results for reading a compressed image that 
is 12000 pixels wide and 45336 lines high.   All tests were 
performed on a Intel Core2 Duo 6420. 
 
 
Test Real Time CPU Time used 

No Read ahead 20.391 seconds 16.629 seconds 

Read ahead 19.885 seconds 16.529 seconds 

No read ahead, 
image processing 

28.965 seconds 25.934 seconds 

Read ahead,  
image processing 

20.217 seconds 25.874 seconds 

 
Table 1: Read ahead performance tests 

 
With no image processing applied, the times with and without 
read ahead are practically the same.  But once an image 
processing algorithm is applied to the data we see a big 
difference when read ahead is enabled.  We will always be 
limited by the time it takes to read new data from the image, but 
with enough processing cores we should be able to perform 
many processing steps on the data without being limited by the 
processing time. 
 
 

6.  KERNELS 

A kernel is described as the set of code that you want to run on 
a specific cache.  Kernels need to be thread safe and fairly 
simple.  Kernels should be given a single output pixel to create 
and be allowed to access any number of input sources.  The 
reason for making kernels very simple is to allow a large 
number of them to run in parallel without the need for large 
amounts of synchronization.  
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A simple example would be a kernel that scales all pixels in an 
image by a factor of 2.  The kernel itself would be given an 
image location to work on (row, sample) and would then first 
read that data, multiply the value by 2, and then write the value 
back into the same location.  The program using the load chain 
would then iterate over the entire image by requesting the load 
chain to read a tile at a time causing the load chain to run the 
kernel on every pixel. 
 
Another example would be where we would want to display 
radiometrically corrected, rectified images in a viewer.  The 
viewer would require a load chain that first decompressed the 
incoming L0 data, ran a radiometric correction on that 
decompressed data, and then rectified the result into an output 
cache.  The load chain would be comprised of an input cache 
for the compressed input data combined with a decompression 
kernel that would decompress the data.  The next step would 
require a cache that contained the decompressed data and a 
radiometric kernel that would perform the radiometric 
correction. The last step would be comprised of the output 
cache and a rectifier kernel which would take the 
radiometrically corrected data and generate rectified image data.  
The viewer would be able to position the output cache at any 
location.  The load chain would determine how to position the 
input caches to generate the resulting data.  Once the input data 
is loaded the kernels would run in sequence and the output 
cache would be filled for that area.  The load chain would also 
attempt to determine the next area to be requested and load that 
data into the input cache as well. 
 
The number of kernels running concurrently would be based on 
the number of computational units available.  Therefore the 
total speed of the processing should scale linearly to the number 
of computational units. 
 
By using the stream processing model we can properly optimize 
certain libraries that have historically been limited to a single 
processing unit.  An example would be a library which reads 
compressed image data.  In the simplest case that library would 
read a chunk of data from a file, decompress it, and then pass 
that data up to the calling system.  The problem with this 
approach is that the decompression isn't set up to run in parallel 
with the reading of data.  With decompression being handled 
as a kernel in the load chain we are able to see large 
improvements in the total time taken to read a compressed 
image. 
 

As the number of processing units increases the real time taken 
to do the load and decompression of an image decreases 
dramatically. 
 
The simple approach of running the kernel on every pixel 
generally doesn't work well when applied to current CPU 
architectures.  The high overhead of creating a large number of 
threads and the context switching of those threads will greatly 
degrade the performance.  More work needs to be given to 
each thread so that the overhead of creating the thread is 
minimized and the need to switch between threads is greatly 
reduced.  Most parallel programming APIs don't force that 
each kernel must only work on one pixel at a time so there are 
easy ways to fix this issue. 
 
OpenMP is a parallel programming API that permits an easy 
way to control how a processing task is divided up among a 
number of processing units.  OpenMP provides a number of 
preprocessor commands that can be added to C and FORTRAN 
code to tell the compiler how to parallelize a certain area of 
code.  For example if you wanted to multiply each pixel by a 
factor of 2 you would write something like this in C: 
 
for (i = 0; i < height; ++i) 
{ 
    for (j = 0; j < width; ++j) 
    { 
 data[i][j] *= 2; 
    } 
} 
 
This would run on a single processing unit and would take time 
proportional to the size of the image to complete.  The same 
code using OpenMP would be: 
 
#pragma omp parallel for 
for (i = 0; i < height; ++i) 
{ 
    for(j = 0; j < width; ++j) 
    { 
 data[i][j] *= 2; 
    } 
} 
 
The difference is minimal between the version with OpenMP 
and the version without;  but now the time taken to perform the 
computation will be divided by the number of processing units 
available.  With OpenMP the definition of a kernel is changed 
in that it now receives the total area that needs to be worked on 
and it is up to the kernel to determine how to parallelize the 
computation.  
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Figure 2: Decompression performance 

 
The GPU approach is similar - and there are a number of 
programming APIs which can be used.  Currently we have 
focused on using NVIDIA's CUDA programming library.  
CUDA requires the programmer to break the problem area into 
a grid of blocks where each block has a fixed number of threads.  
Each thread can then run a given program or kernel.  Grids and 
blocks can be of one, two, or three dimensions.  The thread is 
given it's location in the block as well as the block's location in 
the grid.  The thread then determines both its input and output 
addresses based on its address in the grid of blocks.  The 
advantage of the GPU architecture is that the cost of thread 
creation and context switching is low, so running thousands of 
threads has minimal impact on the overall performance of the 
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7.  CONCLUSIONS run.  This means that kernels can be relatively simple in that 
they only need to focus on outputting a single pixel. 

With the movement of computing systems towards a more 
parallel architecture and with the introduction of newer, more 
specialized parallel systems there is a great need to build 
software around a parallel framework.  In this paper we have 
described one way to build an image processing chain so that it 
will take advantage of the increased computational power of 
multicore systems. 

 
The GPU has some disadvantages which make using it difficult.  
Currently no consumer level GPU supports 64 bit floating point 
formats natively.  Only 32 bit floating point is supported.  
CUDA currently downgrades all requests for 64 bit floating 
point to 32 bit floating point.  This is a problem for 
computations that need high accuracy, like ortho-rectification.  
Newer versions of GPUs are planned to support 64 bit natively 
so this issue should be solved soon. 

 
The focus around a stream processing model has allowed us to 
provide a simple yet powerful framework that can be used 
throughout our software.  We have been able to see significant 
gains with the approach in both data throughput and 
computational speed. 

 
The other issue with GPUs is that they require proper memory 
alignment and well planned memory access to get the best 
performance.  This is an issue in the CPU architecture as well, 
but GPUs tend to be affected more by this problem.  In general 
however, memory alignment and memory access can be fixed 
reasonably easily. 

 
 

8.  FUTURE WORK 
 

Our main goal with the load chain will be to provide 
rectification on the fly of radiometric corrected images.  The 
input data would be compressed L0 images which will need to 
go through decompression, radiometric correction, and 
rectification before being sent to a viewer.  With this approach 
we would alleviate the need for creating L1 images before 
viewing. 

Even with the drawbacks described, the GPU provides a large 
computational advantage over CPU systems.  The simpler 
approach allows for more processing units to be built on the 
chip which allows for more kernels to be run in parallel. 
 
 

 

 
Figure 3: The GPU Devotes More Transistors to Data 
Processing.  (CUDA Programming guide © NVIDIA  

Corporation 2007) 

 
Once GPU systems support 64 bit floating point formats we 
will want to add support for rectification using GPU systems to 
gain even more performance over current multicore systems.  
Eventually the entire load chain could be run on the GPU which 
would minimize the costs associated with transferring data 
between the GPU and the CPU. 
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