
THE “PHOTOGRAMMETRIC LOAD CHAIN” FOR ADS IMAGE DATA
AN INTEGRAL APPROACH TO IMAGE CORRECTION AND RECTIFICATION

M. Downey a, 1, U. Tempelmann b

aPixelgrammetry Inc., suite 212, 5438 – 11 Street NE, Calgary, Alberta, T2E 7E9, Canada

michael.downey@pixelgrammetry.com
bLeica Geosystems AG, Heinrich-Wild-Strasse, 9435 Heerbrugg, Switzerland

udo.tempelmann@leica-geosystems.com

Theme Session, ThS-4

KEY WORDS: Imagery, Software, Processing, Performance, Rectification, Visualization, Radiometric, Automation

ABSTRACT:

A new photogrammetric load chain has been developed for the ADS40 pushbroom sensor focusing on parallel computation and
interactive image processing. It allows image correction and rectification at load time, useful as well for interactive work for the
generation of image products. The performance needed to fulfill these goals has only come with the move to multicore general
purpose computers and programmable graphics cards. A flexible framework is needed that encourages data parallel design. A
programming model called “stream processing” has been the approach taken by many when developing parallel libraries. In this
paper we explore the stream processing model and how it applies to an ADS40 work flow. We look at how the model will apply to
both general purpose computers and programmable graphics cards.

1 Corresponding author.

1. .INTRODUCTION

Early photogrammetric and remote sensing image processing
consisted of a sequence of separate processing steps; with each
step taking data from a storage device, processing, and
returning the data to the storage device. The visualization of the
result was a separate step, which did nothing more than to draw
the image to an output device. With the introduction of
interactive workstations, it became clear that the visualization
would benefit from real-time corrections of the current image
data (image patch). This inspired the idea of a configurable
“image load chain”, which applies single pixel and
neighbourhood operations (such as contrast stretch or image
sharpening) “on the fly” whenever an image patch is loaded.
The same load chain is also useful for operations on complete
images by making separate pre-processing operations obsolete,
with the additional benefit of reduced storage space. Higher-
level operations such as image rectification, while chainable,
have not been considered for interactive work at this time. They
have however, been introduced into specific processing steps
such as image matching.

At the time the first version of the Leica Geosystems Airborne
Digital Scanner (ADS40) processing flow (GPro) was created,
contemporary computing power made it impractical to set up a
complete load chain. The biggest problem was the complexity
of the sensor model for an airborne pushbroom sensor (with its
short term orientation variations). Consequently two product
levels were created on disk: “L1” (plane-rectified) for
stereoscopic work and “L2” (ortho-rectified) as an intermediate
product for ortho-mosaics and remote sensing applications. A
radiometric load chain was implemented into the rectifiers and
the viewer.

The main goal of a new ADS processing package was to
eliminate the need of saving intermediate results and to apply a
completely configurable set of low- and high-level image
corrections on-the-fly. For example, a complete load chain for
stereo-viewing RGB (Red, Green, Blue) or FCIR(False Colour
Infra-red) L1 would apply the following processing steps
separately for each stereo partner:

• decompress image patch into an input cache
• plane-rectify patch to a three-band image
• apply local automatic or user-defined radiometric

stretch
• put into output cache.

In a more complex example, such as the production of a four-
band remote sensing ortho-image, the processing steps could
look like this:

• decompress image patch into an input cache
• apply additional sensor calibration
• convert to an at-sensor radiance image
• apply model-based atmospheric correction
• convert to a ground reflectance image
• apply model-based BRDF (Bidirectional Reflectance

Distribution Function) correction
• ortho-rectify to four band image
• put into output cache.

Most load chain steps require parameters. These must be either
supplied (e.g. sensor calibration), extracted from the flight
data (e.g. exterior orientation) or extracted from the image in a
pre-processing step (e.g. radiometric statistics).

957

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

One critical point in creating products from digital high
resolution images is the processing time. This performance
problem can be partially overcome by using modern multi-core
CPUs and multi-CPU computers. Further improvements in
throughput can also be achieved by distributing tasks in a
computing cluster.

All the more critical is the performance in a viewer application
- where the latency from patch request to patch display has to
be minimal. Even with the use of multi-core/multi-CPU
solutions, the processing latency can not be reduced to a
reasonable value if rectification is included in the load chain.
Massively higher performance can only be achieved with
special acceleration hardware. Although many hardware
solutions are cost prohibitive, the use of advanced consumer-
grade GPUs (Graphics Processing Units – aka video cards) has
the optimal mix of high computing performance and low cost.

2. DEFINITION

Throughout this paper, the expression “load chain” is used for a
special image processing chain, with the following
characteristics:

• the processing is driven from the output side by a
request for an image region and a processing level

• the load chain determines the input area and the
processing kernels to apply

• input data is buffered in one or more input caches
• processing is done by one or more kernels
• kernels are either chained directly or use a cache layer

in-between
• the output data is placed in an output cache, from

where the requesting procedure gets the result

3. STREAM PROCESSING

In the past few years consumer level processing units have
moved from a single all powerful unit to multiple units. The
reason has been the inability to continue the exponential leaps
in processing power using a single processing unit. This
change is causing software to become more parallel aware, and
is changing the approach software developers take when
solving a problem.

One way to solve the parallel programming problem is to use a
stream processing model. In the stream processing model
complex programs, called kernels, operate on a collection of
data sets or streams. These streams are organized in such a
way that any number of kernels can execute in parallel on
different areas of the streams. The key goal of the stream
model is to limit the need for a large amount of synchronization
between each running kernel, which allows for efficient use of
the processing hardware. The forerunner to the stream
programming model is the Single Instruction Multiple Data
(SIMD) model. In this model a single instruction is performed
on a large set of data all at once. Most modern CPUs provide
some sort of SIMD instruction set, yet compilers have difficulty
using the instructions because of the way current software is
designed. The move to a stream processing model allows for
both easier use of SIMD instructions and more specialized
hardware such as GPUs and FPGAs (Field-Programmable
Gate Arrays).

In the stream processing model a large amount of data is first
loaded into a fast storage area and a kernel is then called on
each element in that data. The maximum number of kernels as
possible are run to efficiently use the processing units provided
in the hardware. One of the big advantages of the design is
that it allows for good scaling to newer hardware (as adding
more processing units will allow more kernels to run).

The stream processing model fits nicely with how GPUs work.
Most GPU architectures have a large number of processing
units combined with a high speed memory system. Each
processing unit is designed to run the same program, which can
be loaded and unloaded before and after each run. The
incoming data is broken into equal chunks and passed to each of
the units to process. For example, the NVIDIA 8800GTX
contains 16 multiprocessing units each containing 8 simple
processors for a total of 128 processing units. Up to 6 GPUs
can be attached to a single motherboard, giving the GPU system
a large amount of processing power when compared to current
CPU architectures (which are at four cores and two sockets per
motherboard for consumer grade hardware).

The disadvantage of the GPU architecture is that it does not
have direct access to data from disk and relies on the CPU
system to load new data into its main memory. This data load
is an extra set up cost that is ideally amortized by the
processing advantages that GPUs have over CPU architectures.
An additional drawback with this architecture is that most GPU
programming APIs have been designed around graphics
programming, and general purpose programming has
historically needed to be fit into the graphics programming
model. Recently a number of newer APIs have been
developed with general purpose computing in mind. Both
NVIDIA (with their CUDA programming language) and
AMD/ATI (with their CTM programming language) have
enabled an easier fit for general purpose programming.

With the recent movement of CPUs to more and more
processing cores, the stream processing model is now quite
usable on a pure CPU platform. The difficulty now is to
provide programmers with a way to take advantage of the more
parallel architecture. OpenMP was created to help alleviate
this difficulty of writing parallel algorithms on multipurpose
CPUs. OpenMP provides the management framework required
for running a program on multiple processing units. The
programmer now only needs to organize the data in the correct
way to allow for good parallelism.

4. LOAD CHAIN

From the beginning of our load chain design we had decided to
follow the stream processing model to take advantage of GPUs
as well as multicore CPUs. We separated the design into three
main areas: caches, kernels, and control. Caches would be the
backbone of the system providing high speed access to the data.
Kernels would be the computational components which could
run on both CPU and GPU systems. The control component
would be comprised of a management layer for synchronization
and an I/O layer which would allow for offloading file reads.
The structure of the load chain follows a fairly simple design
where data moves into a cache, gets processed by a set of
kernels, and then is written into another cache. An output
cache can have any number of input caches, but each input
cache can only have at most one output cache. This restriction

958

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

is needed to reduce the amount of synchronization that would
be needed between caches.

To support both a CPU and GPU based load chain we needed to
define caches that work on either system. Since GPUs rely on
the CPU for data, GPU caches can only load data from other
CPU or GPU caches. CPU caches have no restriction and can
be loaded from a file as well as a CPU or GPU cache.
Transfers between CPU and GPU caches need to be minimized
as those transfers are relatively slow. Once data is transferred
onto the GPU it should remain there until the final result is
computed.

Kernels are the computational components of the load chain and
perform a single operation on data in a cache. Any number of
kernels can be added to a cache and the kernels will be run in
series starting with the first kernel added to the cache. Each
kernel will be run on as many processing units that are available.
Once all kernels have run on a specific cache, control is passed
up to the next cache in the chain and its kernels are then run.
This continues until all caches in the chain are processed and
the resulting data is passed to the user.

5. CACHING

Considering that the stream processing model is centred on the
management of data, a well designed caching system will be
critical for the success of any processing library. The main
design goal for the caching system will be to maximize data
throughput. We will require quick access to any data in the
cache and access to that data will need to be thread safe. An
asynchronous update mechanism will also be needed to allow
any portion of the cache to be loaded from disk while a separate
area is being processed. Two main caching methods are being
considered: ‘least recently used’ and ‘toroidal’.

The ‘least recent used’ (LRU) cache is a well known design
where the cache uses the last access time for an area to
determine whether that area should be kept in the cache.
Areas that are accessed often will generally be kept in the cache
while areas that aren't accessed frequently will be removed.
In some situations LRU caches provide good performance, but
they have a number of problems. Neighbouring areas in image
space are not necessarily neighbouring in the cache, so access
to image neighbours can be slow. Additionally most image
manipulation kernels will be fairly consistent in accessing all
the data in the image the same number of times. All image
areas therefore have similar priority in the cache, and will
generally be used and then removed from the cache removing
most of the benefits of the LRU design.

Toroidal caches take a different approach in that they provide
good localized accessed to a specific area of an image.
Toroidal caches could be viewed as a double ring buffer where
the address of a specific pixel in the cache wraps based on the
modulus of the dimensions of the cache. So for a cache with
dimensions of 1024 wide and 1024 high, a pixel at line 25000
and sample 1320 would be at row 424 (25000 modulus 1024)
and column 296 (1320 modulus 1024) in the cache. As the
cache is moved, data at the boundaries of the cache are replaced
with new data from disk. When the cache is move to the right,
new data is loaded on the left, and when the cache is moved
down new data is loaded at the top. The advantages of the
toroidal cache are that it provides good neighbourhood access,
since all data is stored contiguously in the cache, and

neighbouring pixels are generally located next to the current
pixel. Since memory areas are fixed, data loads into and out of
the cache are well optimized. Toroidal caches also fit very
well into GPU architectures, as GPUs provide hardware support
for wrapping address modes.

Figure 1: Moving a toroidal cache up and to the right

The other key to providing a high speed caching system is
having a way to asynchronously update the cache. The
approach we have taken is to have all disk reads preformed in a
separate thread. The cache will send messages to this thread to
have certain sections of the cache loaded. Once the loader
thread completes its work it signals to the load chain that the
new data is ready for processing. With an intelligent read
ahead algorithm the next data to be processed is being loaded
while the current data is processed. This keeps the load chain
from stalling, which provides large performance benefits.
Table 1 shows the results for reading a compressed image that
is 12000 pixels wide and 45336 lines high. All tests were
performed on a Intel Core2 Duo 6420.

Test Real Time CPU Time used

No Read ahead 20.391 seconds 16.629 seconds

Read ahead 19.885 seconds 16.529 seconds

No read ahead,
image processing

28.965 seconds 25.934 seconds

Read ahead,
image processing

20.217 seconds 25.874 seconds

Table 1: Read ahead performance tests

With no image processing applied, the times with and without
read ahead are practically the same. But once an image
processing algorithm is applied to the data we see a big
difference when read ahead is enabled. We will always be
limited by the time it takes to read new data from the image, but
with enough processing cores we should be able to perform
many processing steps on the data without being limited by the
processing time.

6. KERNELS

A kernel is described as the set of code that you want to run on
a specific cache. Kernels need to be thread safe and fairly
simple. Kernels should be given a single output pixel to create
and be allowed to access any number of input sources. The
reason for making kernels very simple is to allow a large
number of them to run in parallel without the need for large
amounts of synchronization.

959

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

A simple example would be a kernel that scales all pixels in an
image by a factor of 2. The kernel itself would be given an
image location to work on (row, sample) and would then first
read that data, multiply the value by 2, and then write the value
back into the same location. The program using the load chain
would then iterate over the entire image by requesting the load
chain to read a tile at a time causing the load chain to run the
kernel on every pixel.

Another example would be where we would want to display
radiometrically corrected, rectified images in a viewer. The
viewer would require a load chain that first decompressed the
incoming L0 data, ran a radiometric correction on that
decompressed data, and then rectified the result into an output
cache. The load chain would be comprised of an input cache
for the compressed input data combined with a decompression
kernel that would decompress the data. The next step would
require a cache that contained the decompressed data and a
radiometric kernel that would perform the radiometric
correction. The last step would be comprised of the output
cache and a rectifier kernel which would take the
radiometrically corrected data and generate rectified image data.
The viewer would be able to position the output cache at any
location. The load chain would determine how to position the
input caches to generate the resulting data. Once the input data
is loaded the kernels would run in sequence and the output
cache would be filled for that area. The load chain would also
attempt to determine the next area to be requested and load that
data into the input cache as well.

The number of kernels running concurrently would be based on
the number of computational units available. Therefore the
total speed of the processing should scale linearly to the number
of computational units.

By using the stream processing model we can properly optimize
certain libraries that have historically been limited to a single
processing unit. An example would be a library which reads
compressed image data. In the simplest case that library would
read a chunk of data from a file, decompress it, and then pass
that data up to the calling system. The problem with this
approach is that the decompression isn't set up to run in parallel
with the reading of data. With decompression being handled
as a kernel in the load chain we are able to see large
improvements in the total time taken to read a compressed
image.

As the number of processing units increases the real time taken
to do the load and decompression of an image decreases
dramatically.

The simple approach of running the kernel on every pixel
generally doesn't work well when applied to current CPU
architectures. The high overhead of creating a large number of
threads and the context switching of those threads will greatly
degrade the performance. More work needs to be given to
each thread so that the overhead of creating the thread is
minimized and the need to switch between threads is greatly
reduced. Most parallel programming APIs don't force that
each kernel must only work on one pixel at a time so there are
easy ways to fix this issue.

OpenMP is a parallel programming API that permits an easy
way to control how a processing task is divided up among a
number of processing units. OpenMP provides a number of
preprocessor commands that can be added to C and FORTRAN
code to tell the compiler how to parallelize a certain area of
code. For example if you wanted to multiply each pixel by a
factor of 2 you would write something like this in C:

for (i = 0; i < height; ++i)
{
 for (j = 0; j < width; ++j)
 {
 data[i][j] *= 2;
 }
}

This would run on a single processing unit and would take time
proportional to the size of the image to complete. The same
code using OpenMP would be:

#pragma omp parallel for
for (i = 0; i < height; ++i)
{
 for(j = 0; j < width; ++j)
 {
 data[i][j] *= 2;
 }
}

The difference is minimal between the version with OpenMP
and the version without; but now the time taken to perform the
computation will be divided by the number of processing units
available. With OpenMP the definition of a kernel is changed
in that it now receives the total area that needs to be worked on
and it is up to the kernel to determine how to parallelize the
computation.

1 Thread 2 Threads 4 Threads
0

2

4

6

8

10

12

14

16

18

Real Time
CPU Time

Figure 2: Decompression performance

The GPU approach is similar - and there are a number of
programming APIs which can be used. Currently we have
focused on using NVIDIA's CUDA programming library.
CUDA requires the programmer to break the problem area into
a grid of blocks where each block has a fixed number of threads.
Each thread can then run a given program or kernel. Grids and
blocks can be of one, two, or three dimensions. The thread is
given it's location in the block as well as the block's location in
the grid. The thread then determines both its input and output
addresses based on its address in the grid of blocks. The
advantage of the GPU architecture is that the cost of thread
creation and context switching is low, so running thousands of
threads has minimal impact on the overall performance of the

960

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

7. CONCLUSIONS run. This means that kernels can be relatively simple in that
they only need to focus on outputting a single pixel.

With the movement of computing systems towards a more
parallel architecture and with the introduction of newer, more
specialized parallel systems there is a great need to build
software around a parallel framework. In this paper we have
described one way to build an image processing chain so that it
will take advantage of the increased computational power of
multicore systems.

The GPU has some disadvantages which make using it difficult.
Currently no consumer level GPU supports 64 bit floating point
formats natively. Only 32 bit floating point is supported.
CUDA currently downgrades all requests for 64 bit floating
point to 32 bit floating point. This is a problem for
computations that need high accuracy, like ortho-rectification.
Newer versions of GPUs are planned to support 64 bit natively
so this issue should be solved soon.

The focus around a stream processing model has allowed us to
provide a simple yet powerful framework that can be used
throughout our software. We have been able to see significant
gains with the approach in both data throughput and
computational speed.

The other issue with GPUs is that they require proper memory
alignment and well planned memory access to get the best
performance. This is an issue in the CPU architecture as well,
but GPUs tend to be affected more by this problem. In general
however, memory alignment and memory access can be fixed
reasonably easily.

8. FUTURE WORK

Our main goal with the load chain will be to provide
rectification on the fly of radiometric corrected images. The
input data would be compressed L0 images which will need to
go through decompression, radiometric correction, and
rectification before being sent to a viewer. With this approach
we would alleviate the need for creating L1 images before
viewing.

Even with the drawbacks described, the GPU provides a large
computational advantage over CPU systems. The simpler
approach allows for more processing units to be built on the
chip which allows for more kernels to be run in parallel.

Figure 3: The GPU Devotes More Transistors to Data
Processing. (CUDA Programming guide © NVIDIA

Corporation 2007)

Once GPU systems support 64 bit floating point formats we
will want to add support for rectification using GPU systems to
gain even more performance over current multicore systems.
Eventually the entire load chain could be run on the GPU which
would minimize the costs associated with transferring data
between the GPU and the CPU.

 REFERENCES

Gummaraju, J. and Rosenblum, M., 2007. Stream Programming
on General Purpose Processors. 38th Annual International
Symposium on Microarchitecture(MICRO-38), Barcelona,
Spain

Figure 3 shows the different focuses of both the GPU and CPU
architectures in a very general sense. Current CPU
architectures have historically focused on cache sizes, with
caches becoming a large portion of the CPU. Numerous
examples using GPUs report speed ups of 30 times that of a
CPU based implementation. Algorithms that fit well into the
GPU system are ones that have a high arithmetic intensity.
Ortho-rectification should be a good candidate for running on
the GPU once GPUs support 64 bit floating point formats.

http://developer.download.nvidia.com/compute/cuda/1_1/NVID
IA_CUDA_Programming_Guide_1.1.pdf (29 Nov. 2007)
http://www.openmp.org/mp-documents/spec25.pdf (May 2005)

NVIDIA, 2007. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide version 1.1.

 OpenMP Architecture Review Board, 2005. OpenMP
Application Program Interface version 2.5.

961

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://www.openmp.org/mp-documents/spec25.pdf

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

962

