
ADAPTIVE LEVEL OF DETAIL FOR LARGE TERRAIN VISUALIZATION

Fuan Tsai12* and Huan-Chih Chiu2
1Center for Space and Remote Sensing Research

2Department of Civil Engineering
National Central University

300 Zhong-Da Rd.,Zhongli,320 Taoyuan Taiwan,China -
 ftsai@csrsr.ncu.edu.tw; 953202068@cc.ncu.edu.tw

KEY WORDS: Level of Detail, Mesh Refinement, Digital Terrain Model, Visualization, 3D GIS

ABSTRACT:

This paper presents a sophisticated tile-based terrain rendering system for large-area terrain visualization. The developed system
employs quadtree algorithm to create multiple levels of details (LOD) of terrain tiles. The visualization determines visible tiles by
view frustum culling and renders the scene efficiently. A key issue in quadtree-based LOD generation is the thresholding for
different levels. A novel thresholding scheme based on calculated ground sample distances is proposed and provides better LODs
with screen resolution. In addition, a nested LOD system is used to improve performance, especially during the initial stage of a
visualization of large datasets. T-junctions caused by discontinuities among adjacent tiles are also effectively eliminated with the
developed mesh refinement algorithm. Combined with texture LODs, the developed system can produce seamless visualization of
large terrain datasets with high rendering performance. It provides near real-time terrain visualization capability for large-area
demonstration and applications.

* Corresponding author.

1. INTRODUCTION

Three-Dimensional (3D) terrain rendering is one of the most
important components in the visualization of cyber city and
other 3D GIS applications. When dealing with large-area terrain
visualization, the vast amount of data may exceed the rendering
capability of graphic hardware and cause poor performance of
the system. Most importantly, in real-time visualization
applications, the data resolution is much higher than screen,
thus result in data redundancy and lower the efficiency.
Furthermore, it may produce aliasing artefacts when rendering
dense meshes. In order to reduce the number of polygons, a few
researches have proposed different algorithms based on level of
detail (LOD) for general 3D triangulated meshes (Cignoni et al.,
1998; Luebke et al., 2003). Losasso and Hoppe (2004)
categorized them as the following four categories:

1. Irregular meshes (triangulated irregular networks,
TIN) (e.g. Cignoni et al., 1997).

2. Bin-tree hierarchies (longest-edge bisection,
 restricted quadtree, hierarchies of right triangles) (e.g.
 Blow, 2000).

3. Bin-tree regions (coarser than Bin-tree hierarchies)
 (e.g. Cignoni et al., 2003).

4. Tiled blocks (square patches that are tessellated at
 different resolutions) (e.g. Tsai et al., 2006).

Tile-based approaches have become popular for large-area
terrain visualization because the original DEM data can be pre-
processed by tiles and only visible tiles need to be rendered in
runtime. When rendering, the data will be loaded and rendered
quickly without further effort for triangulation. In a previous
study (Tsai et al., 2006), a set of LODs was generated for each
tile using a dynamic quadtree algorithm. When rendering the
terrain, view frustum culling was used to decide visible tiles and
computed view importance to assign suitable tile LOD. This
study further improves the developed tile-based terrain
visualization system. Firstly, the original thresholds for

quadtree were determined by the height difference in each tile,
but it is difficult to connect the LODs with view importance. A
new thresholding scheme based on view-dependent image-
space error metric (Lindstrom et al., 1996) is proposed to
achieve more reasonable LOD generation.

Secondly, conventional LOD systems often divide the data set
into small tiles geographically. This may result in poor
performance or abrupt LOD changes when dealing with large-
area visualization projects, especially during the initial stage.
To address this issue, a nested LOD system is developed to
create a finer set of LOD tiles and a coarser LOD set for quick
representation of large areas. The switch between the two LOD
sets is established according to viewer altitude, distance and
resolution dependency etc. Thirdly, when visualizing a terrain
by mesh tiles, there are usually discontinuities along tile edges,
causing so-called T-junctions among different tiles. A mesh-
merging algorithm is also proposed to refine the determined
LOD meshes in order to eliminate T-junctions. Augmented with
these improvements, the developed system will produce
seamless landscape scenes consisting of multiple tiles of
different LOD layers more efficiently.

2. DATA PRE-PROCESSING

In tiled-based visualization, each terrain tile should be
processed before runtime. Fig. 1 explains the workflow of data
pre-processing, including DEM pre-processing and processing
of texture images. Two nested LOD sets will be generated for
the DEM data. The first is called Core-LOD-Set (Nested LOD
Sets 1) and is created using quadtree algorithm as demonstrated
in Tsai et al. (2006). Based on the coarsest level of the Core-
LOD-Set, an Outer-LOD-Set (Nested LOD Sets 2) is generated
by resampling. Differences between adjacent LOD levels are
identified and stored as the “difference vectors”, so when a
tile’s LOD changes, the meshes can be refined using difference
vectors instead of reconstructing a new mesh from the new
LOD vertices. Furthermore, in order to remove T-junctions

579

between different tiles, the edge information of all levels of all
tiles will be obtained from the Core-LOD-Set, and stored in the
server side database. As for the (texture) image pre-processing,
the LODs are created using image pyramid or wavelet-based
resampling schemes, if image streaming is considered.

Figure 1. Procedure of data pre-processing.

2.1 Core-LOD-Set

In tile-based terrain visualization, original DEM must be tiled
into regular blocks as illustrated in Fig. 2. The dimension of
each tile must be 12 +n for quadtree processing. Zero data
(hollow points) may be added to complete boundary tiles.

Figure 2. Tiled DEM.

For quadtree operations, threshold is the key factor. In dynamic
thresholding (Tsai et al., 2006), the threshold is based on the
maximum difference of height in each tile. They are computed
from (1).

jn

j

t
m
nmMinHMaxHTh

MinHMaxHt

×
−

×−=

−=

)__(

)__log(
(1)

where H_Max = maximum height
 H_Min = minimum height
 m = total number of levels
 n = target level

A disadvantage of the dynamic thresholding is difficult to find
the relationship between height difference and view importance.
Therefore, this study develops a new thresholding scheme based
on the view-dependent image-space error metric. The concept is
to set thresholds by screen resolution and distances from view
points to the centres of tiles. Taking Fig. 3 as an example, the
Ground Sampling Distance (GSD) of the tile’s centre is
calculated using Equation (2). The GSD is used as the 1-pixel-
error threshold for LOD generation.

Figure 3. GSD determination.

scanlineper pixels
FOV

=θ

(r)
DGSD

cos
)tan(θ×

=
(2)

When thresholds of all LOD levels are decided, quadtree
algorithm can be applied to generate all LOD levels of the tile
according to the following procedure:

1. Search all vertices located in the tile (sub-tile) and
get the total number of vertices, N.

2. Calculate distances from vertices to sub-tile, di
3. Compare di with the threshold and count how

many di are smaller than the threshold, Nd.
4. If Nd /N is less than 95%, the sub-tile can be

considered a plane, and the subdivision is done;
otherwise, it should be divided and quartered
continuously.

2.2 Outer-LOD-Set

Figure 4 displays the relationship of the nested LOD sets. The
coarsest level of the Core-LOD-Set is the basis of the Outer-
LOD-Set. By continuously consolidating meshes of the Outer-
LOD-Set base, a new LOD set is created as shown in Fig. 5.

Figure 4. Nested LOD sets

The idea is to set threshold resolutions for different levels in the
Outer-LOD-Set. When the level of detail is coarser, the
threshold should be larger. If there are meshes whose
resolutions are less than the threshold, the triangles within the
mesh should be merged as the shaded meshes in Fig. 5.

Figure 5. Generation of the Outer-LOD-Set.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

580

2.3 Texture LOD

In addition to the height field meshes, terrain texture can be
draped onto the generated 3D terrain surfaces in order to create
a more realistic look and feel of the visualization. Similar to the
DEM LOD process, the original texture image must divide into
several tiles. Each image title will also be resampled to create
an image pyramid. Or, if high performance data transmission on
the internet is a concern, wavelet-based resampling schemes can
be used in lieu of image pyramid, so it will be easy to utilize
image streaming for data transmission. However, no matter
what image resampling scheme is used, the dimension of a
texture image (of each level) must be power of 2 for OpenGL
implementation, which will then enable hardware rendering
available with most modern graphical display cards.

3. TERRAIN RENDERING

Figure 6 illustrates the complete procedure for interactive
(view-dependent) terrain rendering. Four pre-processed data
sets are required. Before rendering, the system transmits the
coarser level (base tile) of the Core-LOD-Set. At the same time,
viewer orientation and position (view parameters) must be set.
The view parameters are used for view-frustum culling to
determine the visibility of tiles.

Figure 6. Terrain rendering procedure.

Next, a decision box will compare the viewer altitude with a
pre-defined threshold for the switch of the two nested LOD sets.
If the viewer height is larger than the threshold, the Outer-LOD-
Set will be loaded and rendered. This usually happens in the
initial stage of a high altitude fly-through simulation or similar
visualization. By switching to the Outer-LOD-Set, the system
can provide fast rendering and reduce the latency. Otherwise,
users will have to wait a long time but gain little visual details
because the DEM resolution is too high and the distance is too
far away to show fine terrain details. When the viewer altitude
is lower than the threshold, the rendering target will be
switched to the Core-LOD-Set. Once the mesh is prepared,
textures will be loaded and mapped onto terrain surfaces. The
process will be repeated for each frame. When the view

parameters change and cause the LOD of any tile changes,
difference vectors are provided to refine the terrain meshes.

3.1 Removing T-junctions between Tiles

Because there are discontinuities between adjacent tiles, there
may be so-called T-junctions along tile edges, producing cracks
in the rendered scene. In order to deal with this problem, an
algorithm is developed to remove T-junctions. Fig. 7 explains
the procedure of T-junctions removal. In this figure, it shows a
target tile and an adjacent tile. In the target tile, Ta~Tc are three
boundary triangles, and T1~T7 are their vertices. The adjacent
tile has a similar boundary meshes and vertices but they are
noted as Aa~Ac and A1~A7. In this case, the procedure of T-
junction removal is to compares Y coordinates of boundary
vertices with the following steps:

1. The comparison starts from T1 and A1. Because their Y

coordinates are equal, the two vertices remain unchanged.
2. Moving to next pair of vertices, A2 is larger than T2. This

means a T-junction exists at A2, and it will be recorded.
Now, replace A2 with the next position (A3) to see if A3 is
equal to T2. If they are, then this round of comparison is
done.

3. Because a crack has been found, the procedure will
remove the original triangle (Ta) and add two new
triangles (∆ T1 T5 A2, ∆A2 T5 T2). By this way, the
number and position of triangles are identical on the edge
of the two tiles and the T-junction is removed.

4. Starting from T2 and A3 and repeat steps 1~3. A crack can
be found at T3, and it will be fixed by replacing Ac with
two new triangles (∆A3 T3 A7, ∆A7 T3 A4).

Figure 7. T-junctions removal.

3.2 Texture LOD

Texture mapping on terrain meshes is important for
visualization because it provides a more realistic look and feel.
In addition, it creates better visual effects when the terrain
meshes are coarse. Texture mapping is also an effective way for
information conveyance. For terrain visualization, satellite
images or aerial photographs are common sources of terrain
texture mapping. However, the original images are usually too
large to handle when mapping in real-time. Using LOD
techniques described in 2.3, the developed system is capable of
applying appropriate levels of terrain texture mapping based on
different viewing parameters.

Basically, the decision of suitable terrain texture LOD utilizes
the same concept of GSD (Fig. 3). The GSD of a tile’s centre
will be calculated and compared with image resolutions. If GSD
is larger than the resolution of selected level and less than the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

581

next level, this level of texture image will be mapped onto the
corresponding tile meshes.

4. RESULTS AND DISCUSSIONS

The developed terrain rendering system has been tested on an
AMD Athlon 3500 with 2GB memory, and an nVidia GeForce
7300 GT graphics card with 128M texture memory. The
rendering application has been implemented using wxDev C++
with OpenGL for rendering. This section will describe and
discuss selected experimental results.

4.1 Test Data Sets

The first data set used for testing is the DEM of entire Taiwan.
The original DEM dataset is 5022 × 9555 grids with a 40m by
40m spatial resolution and 1m resolution in elevation (Z-axis).
The maximum height in the DEM is 3941m above sea-level,
and the minimum height is 0m. The entire DEM dataset is
partitioned into 10 × 19 tiles and the size of each tile has been
set at 513 × 513. A mosaic image generated from SPOT-5
satellite images acquired in 2005 is used as the source of terrain
texture. The resolution of the mosaic image is resampled to
2.5m, and the image size is 88000×160000 pixels. Firstly, this
image has been tiled into the same numbers and positions as the
DEM tiles, and then resampled each sub-image into 8 levels
from 4096×4096 to 32×32. All texture images are stored in
PNG format.

The second data set, Puget Sound--located in Washington,
USA--is also used for testing the developed algorithms. The
DEM is about 1500 km 2 at 9 m ground resolution and 0.3 m
altitude resolution. The maximum height is 3665 m, and the
minimum height is -290 m. The dataset is divided into 23 × 29
tiles with 513 × 513 tile size. A synthesized image is used as the
texture image. The dimension of the texture image is 2000 ×
2500 pixels, and therefore no texture LOD is used in this
dataset since the image size is relatively small.

Table 1 and 2 list 6 distances to compute GSDs from the
Taiwan dataset and the Puget Sound dataset, respectively. This
indicates that there are 6 levels of the Core-LOD-Set in both
datasets. There are 6 GSDs in each dataset, and they can be
considered as thresholds (of 1-pixel error). Thresholds of 2~4
pixels errors are calculated accordingly.

Table 1. Thresholds for the Taiwan DEM.

Distance 24000 32000 40000 48000 56000 64000
GSD 17 23 29 34 40 46

2 pixels error 34 46 58 68 80 92
3 pixels error 51 69 87 102 120 138
4 pixels error 68 92 116 136 160 184

Table 2. Thresholds for the Puget Sound DEM.

Distance 5000 10000 15000 20000 25000 30000

GSD 4 8 11 15 19 22
2 pixels error 8 16 22 30 38 44
3 pixels error 12 24 33 45 57 66
4 pixels error 16 32 44 60 76 88

Outer-LOD-Sets are also created for both DEM datasets.
Because the size of each tile is)12()12(99 +×+ , the thresholds
must be less than that size. Accordingly, four thresholds, from

)12()12(55 +×+ to)12()12(88 +×+ , are used to create the
Outer-LOD-Sets.

4.2 Comparing with Delaunay Triangulation

The applied quadtree LOD generation is compared with
Delaunay triangulations. Fig. 9 displays the visual effects of a
tile with 3-pixels error LOD processing. It is a level 3 tile with
5808 vertices in both cases. The numbers of triangles are very
close, too. There are 11407 triangles in quadtree and 11524 in
Delaunay. Fig. 8(a) is a top view of Quadtree (left) and
Delaunay (right), and fig. 8(b) is a perspective view of the
meshes. It appears that Delaunay triangulation shows a better
construction of terrain features than quadtree. However, when
texture mapping is applied to meshes, it is almost impossible to
differentiate one from the other visually.

(a) top view of meshes

(b) perspective view of meshes

(c) perspective view with texture mapping

Figure 8. Comparsion between Quadtree (left) and Delaunay

(right) LODs.

Although Delaunay triangulation seems to produce better
meshes in describing detail terrain features, the data structure of
quadtree results is more organized than Delaunay and makes the
rendering more efficient. Taking T-junctions removal for
example, Delaunay will take significantly more efforts to
remove T-junctions because the triangles on tile edges are
irregular. In addition, for Delaunay triangulations, it will be
inefficient to use the “difference vectors” scheme because
unlike quadtree-based LOD, vertices in different levels of
Delaunay-based LOD results do not have an “add-on” property.
Therefore, it will be difficult to achieve progressive

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

582

transmission and adaptive rendering of Delaunay-based LOD
tiles and thus inadequate for real-time visualization applications.

4.3 Flythrough Simulation

To demonstrate the performance of the developed visualization
system, two routes have been planed in both data sets for
complete fly-through simulations. One of the plotted routes
passes mountainous areas of the data set, and the other passes
plain regions. In the Taiwan data set (as displayed in fig. 9), the
mountain route starts from M1 and ends at M5. The total flight
path is 513 km in ground track and exhibited with 960 rendered
frames. The plain route starts from P1 and ends at P5. The
length of flythrough is about 623 km and with 1521 rendered
frames.

Figure 9. Flythrough routes (Taiwan).

In the Puget Sound case (as displayed in fig. 10), M1 ~ M4 and
P1 ~ P4 represent the Puget Sound mountain route and plain
route, respectively. The total distance of the mountain fly-
through is 144 km in ground track with 1202 rendered frames.
The flight path of the plain route is 160 km on the ground and
with 1480 rendered frames. In addition, M2 and P2 are also the
switching points from the Outer-LOD-Set to the Core-LOD-Set
in both cases.

Figure 10. Flythrough routes (Puget Sound).

Table 3 demonstrates the rendering efficiency, in frames per
second (FPS) and rendered number of triangles per second, of
three (2~4 pixels errors) thresholding schemes. The lowest FPS
acceptable for human eyes is about 25. The mountain route of
Taiwan with 2-pixels error data shows the lowest frame rate
(24.51 FPS), but is still good enough for a real-time
visualization. For other cases, the frame rates are all higher than
25 FPS. These results prove that the developed terrain rendering
system is very efficient.

Table 3. Efficiency of flythrough simulations.

Taiwan
Mountain

Taiwan
Plain

Puget Sound
Mountain

Puget Sound
Plain Threshold

Scheme
FPS M∆ /s FPS M∆ /s FPS M∆ /s FPS M∆ /s

2 Pixels
Error 24.51 5.00 42.71 5.07 48.84 4.47 125.49 2.90

3 Pixels
Error 48.73 4.54 73.96 3.75 64.77 3.15 220.95 2.25

4 Pixels
Error 61.26 3.22 91.01 2.46 97.37 3.00 307.20 1.81

4.4 T-junction Removal

Fig. 11(a) shows the T-junctions and the cracks in the rendered
scene before removing them. The circle on the top left figure
identifies T-junctions in meshes, which result in a noticeable
crack after applying texture mapping. As displayed in Fig.
12(b), after removing the T-junctions with the algorithms
described in 3.1, the crack artefact has been effectively
corrected, resulting a seamless rendering of the scene.

(a) before

(b) after

Figure 11. Visual effect of T-junctions removal.

Fig. 12 plots the accumulated rendering time of the Taiwan
dataset with and without T-junction removal. As displayed in
the figure, curves of cumulative rendering time are almost
identical in both cases, indicating that removing T-junctions
does not take too much effort.

0

2

4

6

8

10

12

14

1 101 201 301 401 501
Frame

A
cc

um
ul

at
ed

 T
im

e
(S

ec
)

T-junctions Removal
T-junctions Existence

Figure 12. Accumulated rendering time (Taiwan).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

583

Fig . 13 shows the same test using Puget Sound data. It exhibits
a similar pattern as fig. 12. As a result, the developed T-
junctions removal algorithm provides a significant improvement
in visual effects, but causes insubstantial impact to the
rendering performance.

0

2

4

6

8

10

12

14

16

1 101 201 301 401 501 601
Frame

A
cc

um
ul

at
ed

 T
im

e
(S

ec
)

T-junctions Removal
T-junctions Existence

Figure 13. Accumulated rendering time (Puget Sound).

4.5 Effects of Nested LOD

Fig. 14 displays the accumulated rendering time and number of
triangles with and without utilizing nested LOD for Taiwan data.
When using nested LOD, a jump is observed at #230 frame
approximately. It is a switching point of the two LOD sets. As
shown in the figure, it takes about 3.5 seconds to initialize the
visualization without using nested LOD, because it must load
more than 200 thousand triangles in the first frame. On the
other hand, using nested LOD, the system needs only milli-
seconds to load about one thousand triangles. Similar result can
be observed in the Puget Sound data set (fig. 15). Consequently,
nested LOD makes a substantial improvement on rendering
efficiency during the initial stage of visualization.

0

2

4

6

8

10

12

14

16

1 101 201 301 401
Frame

A
cc

un
ul

at
ed

 T
im

e
(S

ec
)

No Nested LOD
Using Nested LOD

0

50

100

150

200

250

1 101 201 301 401
Frame

N
um

be
r o

f T
ria

ng
le

s (
th

ou
.)

No Nested LOD
Using Nested LOD

Figure 14. Performance of Nested LOD (Taiwan).

0

2

4

6

8

10

12

14

16

18

1 101 201 301 401 501 601 701 801
Frame

A
cc

um
ul

at
ed

 T
im

e
(S

ec
)

No Nested LOD
Using Nested LOD

0

20

40

60

80

100

120

140

1 101 201 301 401 501 601 701 801
Frame

N
um

be
r o

f T
ria

ng
le

s (
th

ou
.)

No Nested LOD
Using Nested LOD

Figure 15. Performance of Nested LOD (Puget Sound).

5. CONCLUSIONS

The developed tile-based terrain rendering system allows users
to obtain near real-time visualization of large terrain data sets.
The proposed new thresholding scheme based on Ground
Sample Distance enables more reasonable quadtree-based LOD
generation for data pre-processing. It also provides better
relationship of the LOD generation and view-importance for
determining appropriate LOD levels of visible tiles. The
developed T-junction removal algorithm can eliminate
discontinuities between adjacent tile meshes effectively and
have little impact to the overall rendering performance. Using
nested LOD improves the performance significantly, especially
during the initial stage of visualization. Test examples with two
large DEM datasets demonstrated in this paper indicates that the
developed system can produce seamless rendered scenes with
high performance in near real-time visualization applications.

 REFERENCES

Blow, J., 2000. “Terrain Rendering at High Levels of Detail”.
In Proc. 2000 Game Developers Conference, pp. 903-912.

Cignoni, P., E. Puppo, R. Scopigno, 1997. “Representation and
Visualization of Terrain Surfaces at Variable Resolution”. The
Visual Computer, 13:5, pp. 199-217.

Cignoni, P., C. Montani, R. Scopigno, 1998. “A comparison of
mesh simplification algorithms”. Computers & Graphics, 22:1,
pp. 37–54.

Cignoni, P., F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, R.
Scopigno, 2003. ”BDAM – Batched Dynamic Adaptive Meshes
for High Performance Terrain Visualization”. Computer
Graphics Forum, 22:3, pp. 505–514.

Losasso, F., H. Hoppe, 2004. “Geometry Clipmaps: Terrain
Rendering Using Nested Regular Grids”. ACM Transactions on
Graphics (TOG) Archive, 23:3, pp. 769-776.

Lindstrom, P., D. Koller, W. Ribarsky, L. F. Hodges, N. Faust,
G. A. Turner, 1996. “Real-time continuous level of detail
rendering of height fields”. In Proc. of ACM SIGGRAPH96, pp.
109–118.

Luebke, D., M. Reddy, J. D. Cohen, A. Varshney, B. Watson,
R. Huebner, 2003. “Level of Detail for 3D Graphics”. Morgan
Kaufmann Publishers, San Francisco, California.

Tsai, F., H-S Liu, J-K Liu, K-H Hsiao, 2006. “Progressive
Streaming and Rendering of 3D Terrain for Cyber City
Visualization”. In Proc. of ACRS2006, Oct. 2006, Ulaanbatar
Mongolia.

 ACKNOWLEDGEMENTS

This study was supported by the National Science Council and
the Ministry of Interior of Taiwan (ROC) under project
numbers NSC-95-2221-E-008-104-MY2 and H950925. The
Puget Sound DEM dataset was from University of Washington:
(http://www.ocean.washington.edu/data/pugetsound/).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

584

