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ABSTRACT: 
 
In web based GIS visual simulation systems, the DEM multi-scale presentation and lossy-to-lossless progressive compression and 
transmission based on integer-to-integer wavelet transforms can eliminate the redundant data between resolutions. Therefore, it can 
relieve effectively the contradiction between the voluminous DEM data set and the limited network bandwidth. Among the many 
integer-to-integer wavelet transforms, which one is the most suitable to the DEM multi-scale representation and compression with 
high accuracy in every resolution has not been set forth. Thus, 15 different reversible integer-to-integer wavelet transforms are 
compared when compressing the DEM data with multi-scale progressive characteristic via the JPEG2000 algorithm, and these 
comparisons are mainly focused on their accuracy performance of maintaining the main original terrain characters in different 
resolutions. The terrain accuracy parameters are selected elaborately to better indicate the accuracy performance of different wavelet 
transforms. Theses transforms’ lossless compression performance and computational complexity are also considered. Through a lot 
of experimental data and analyses, the 2/6 integer wavelet transform is found to be the most suitable transform for the DEM multi-
scale representation and progressive compression. Factors affecting these performances are also discussed through theoretical 
arguments, which could be a guide to design new and more effective integer wavelet transforms for DEM progressive compression. 
 
 

1. INTRODUCTION 

Web-based GIS visual simulation systems have to handle 
voluminous elevation data sets, but the limited network 
bandwidth is a bottleneck. One commonly used method to solve 
this problem is that the data servers provide DEM multi-scale 
representations stored and compressed independently and 
transmit corresponding scale data according to the needs of 
clients. For example, Rishe et al. (2004) derived different 
resolution DEM data from the original resolution data and 
stored independently in server to provide the client different 
scale DEM data. However, in this method, there are a lot of 
redundant data between different resolutions because of the 
independence between different resolutions. 
 
In recent years, wavelet transforms have been successfully used 
for images encoding. The multi-resolution nature of the 
transform, without redundancy between resolutions, is ideal for 
image data multi-resolution progressive compression and 
transmission. Therefore, the multi-resolution progressive 
compression method based on wavelet transform has been used 
in a few compression algorithms, for example, the EBCOT 
algorithm (Taubman, 2000) and the EZBC algorithm 
(Hsiang,2001), and these algorithms are now mainly used to 
compress image and video data. For example, the new 
generation still image compression standard JPEG2000 (Boliek  
et al., 2000) is based on the EBCOT algorithm.  
 
The DEM data can be considered as grey image data, so above 
multi-resolution progressive compression method is an ideal 
way to relieve effectively the contradiction between the 
voluminous DEM data sets and the limited network bandwidth. 
Because the DEM data needs high fidelities, lossy-to-lossless 

progressive compression should be supported. However, the 
conventional wavelet filters often have floating point 
coefficients and couldn’t realize the lossless reconstruction. The 
second generation wavelet transforms based on lifting scheme 
(Sweldens, 1996) map integers to integers and realize the 
lossless compression of DEM data with minimal memory usage 
and low computational complexity. What is more, the multi-
scale progressive compression based on integer wavelets can 
easily allows the transmission of low resolution versions firstly, 
followed by transmissions of successive details. 
 
Among the many different integer-to-integer wavelet 
transforms, which one is the most suitable to the DEM multi-
scale representation and compression with high accuracy in 
every resolution has not been set forth in relative papers so far. 
Adams and Kossentini (2000) compared and analysed the 
image compression performance of 12 integer-to-integer 
wavelet transforms commonly used. However, this paper 
mainly aimed to the common still images. The DEM data have 
some particular characters different from regular optical images, 
such as the higher correlation between adjacent values and 
higher accuracy demand at different resolutions. Therefore, the 
most suitable specific integer wavelet transform that meets 
above needs should be chosen through further research in depth. 
However, as far as we know, current available researches have 
not solved this problem perfectly. Ottoson (2001) compressed 
the DEM data with only the DB6 conventional wavelet without 
comparing with other wavelets according to the characters of 
DEM data, and in addition the compression was lossy.  Chen 
and Li (2007) only simply used the 5/3 integer transform which 
is commonly used in lossless image compression to compress 
DEM data, also without comparing with other integer wavelet 
transforms. Liu et al. (2005) considered these wavelets’ 
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accuracy performance in different resolutions, but they simply 
compared 4 conventional wavelets using only one DEM 
experimental data and comparing only one resolution, and the 
accuracy parameters they used that indicated the accuracy 
performance of maintaining the main original terrain characters 
in different resolutions were also too simple.   
 
Thus, in this paper 15 different reversible integer-to-integer 
wavelet transforms are compared on the basis of their accuracy 
performance of maintaining the main original terrain characters 
in different resolutions when compressing the DEM data with 
multi-scale progressive method. The terrain accuracy 
parameters are selected elaborately to better indicate the 
accuracy performance of different wavelet transforms. At the 
same time, these transforms’ lossless compression performance 
and computational complexity are also considered. In addition, 
factors affecting these performances are discussed, supported 
by both experimental data and theoretical arguments.  
 
 

2. INTEGER WAVELET TRANSFORMS AND 
COMPUTAIONAL COMPLEXITY 

2.1 Integer wavelet transform 

The reversible integer-to-integer wavelet transforms considered 
in this study were constructed using the technique described in 
Calderbank et al. (1998). In all, 15 transforms known to be 
effective for image coding were evaluated for the DEM data 
progressive compression. All of these transforms are strictly 
one-dimensional (1-D) in nature and are based on two-channel 
filter banks. The DEM data are handled by transforming the 
rows and columns in succession and the inverse transform must 
operate in the reverse order. The forward transform equations 
for each of the transforms are given as follows (Adams and 
Kossentini, 2000; Fang et al., 1998; Calderbank et al., 1998). 
The input signal, low pass sub-band signal, and high pass sub-
band signal are denoted as x[n], s[n], and d[n], respectively. For 
convenience, 

0[ ] [2 ]s n x n=  and
0[ ] [2 1]d n x n= + are defined. The 

inverse transformation equations can be trivially deduced from 
the forward transformation equations, and thus are not given. 
Here, the notation m/n represents a transform with m 
coefficients in the low pass analysis filter and n coefficients in 
the high pass analysis filter. The notation (x, y) represents a 
transform with x and y vanishing moments in the analysis and 
synthesis high pass filters respectively. 
 
 
15 integer-to-integer wavelet transforms compared: 
S transform (1, 1) :  

0 0

0 1

[ ] [ ] [ ]
1[ ] [ ] [ ]
2

d n d n s n

s n s n d n

= −
⎢ ⎥= + ⎢ ⎥⎣ ⎦

       

5/3 transform (2, 2) : 
     

0 0 0

0

1[ ] [ ] ( [ 1] [ ])
2

1 1[ ] [ ] ( [ ] [ 1])
4 2

d n d n s n s n

s n s n d n d n

⎢ ⎥= − + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − +⎢ ⎥⎣ ⎦

 

2/6 transform (3, 1) :      
1 0 0

0 1

1

[ ] [ ] [ ]
1[ ] [ ] [ ]
2
1 1[ ] [ ] ( [ 1] [ 1])
4 2

d n d n s n

s n s n d n

d n d n s n s n

= −
⎢ ⎥= + ⎢ ⎥⎣ ⎦
⎢ ⎥= + − + + − +⎢ ⎥⎣ ⎦

 

SPB transform : 

     
1 0 0

0 1

1 1

[ ] [ ] [ ]
1[ ] [ ] [ ]
2
1 1[ ] [ ] ( 3 [ 1] [ ] 2 [ 1] 2 [ 1]
8 2

d n d n s n

s n s n d n

d n d n s n s n s n d n

= −
⎢ ⎥= + ⎢ ⎥⎣ ⎦
⎢ ⎥= + − + + + − + + +⎢ ⎥⎣ ⎦

 

9/7-M transform (4, 2) : 
     

0 0 0 0 0

0

1 1[ ] [ ] (( [ 2] [ 1]) 9( [ 1] [ ]))
16 2
1 1[ ] [ ] ( [ ] [ 1])
4 2

d n d n s n s n s n s n

s n s n d n d n

⎢ ⎥= + + + − − + + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − +⎢ ⎥⎣ ⎦

 

(2, 4) transforms : 
      

0

0

1 1[ ] [ ] ( [ ] [ 1])
2 2

19 3 1[ ] [ ] ( [ 1] [ ]) ( [ 2] [ 1])
64 64 2

d n d n s n s n

s n s n d n d n d n d n

⎢ ⎥= − + + +⎢ ⎥⎣ ⎦
⎢ ⎥= + − + − − + + +⎢ ⎥⎣ ⎦

 

(6, 2) transform : 
      

0

0

75 25( [ ] [ 1]) ( [ 1] [ 2])
128 256[ ] [ ]

3 1( [ 2] [ 3])
256 2

1 1[ ] [ ] ( [ 1] [ ])
4 2

x n x n x n x n
d n d n

x n x n

s n s n d n d n

⎢ ⎥+ + − − + + +⎢ ⎥
= − ⎢ ⎥

⎢ ⎥− + + +⎢ ⎥⎣ ⎦
⎢ ⎥= + − + +⎢ ⎥⎣ ⎦

 

13/7-T transform (4, 4) : 
      

0 0 0 0 0

0

1 1[ ] [ ] (( [ 2] [ 1]) 9( [ 1] [ ]))
16 2
1 1[ ] [ ] ( [ 1] [ 2]) 9( [ ] [ 1]))

32 2

d n d n s n s n s n s n

s n s n d n d n d n d n

⎢ ⎥= + + + − − + + +⎢ ⎥⎣ ⎦
⎢ ⎥= + − + − − + + − +⎢ ⎥⎣ ⎦

 

5/11-C transform  (2+2, 2): 
      

1 0 0 0

0 1 1

1 1 1 1 1

1[ ] [ ] ( [ 1] [ ])
2

1 1[ ] [ ] ( [ ] [ 1])
4 2
1 1[ ] [ ] ( [ 2] [ 1] [ ] [ 1])

16 2

d n d n s n s n

s n s n d n d n

d n d n s n s n s n s n

⎢ ⎥= − + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − + − + − +⎢ ⎥⎣ ⎦

 

2/10 transform  (5, 1) :       
1 0 0

0 1

1

[ ] [ ] [ ]
1[ ] [ ] [ ]
2
1 1[ ] [ ] (22( [ 1] [ 1]) 3( [ 2] [ 2]))
64 2

d n d n s n

s n s n d n

d n d n s n s n s n s n

= −
⎢ ⎥= + ⎢ ⎥⎣ ⎦
⎢ ⎥= + − − + + + − − +⎢ ⎥⎣ ⎦

 

5/11-A transform (2, 2) : 
      

1 0 0 0

0 1 1

1 1 1 1 1

1[ ] [ ] ( [ 1] [ ])
2

1 1[ ] [ ] ( [ ] [ 1])
4 2
1 1[ ] [ ] ( [ 2] [ 1] [ ] [ 1])
32 2

d n d n s n s n

s n s n d n d n

d n d n s n s n s n s n

⎢ ⎥= − + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − + − + − +⎢ ⎥⎣ ⎦

 

6/14 transform (3, 3) :       
1 0 0

0 1 1 1

1 1 1 1 1

[ ] [ ] [ ]
1 1[ ] [ ] ( [ 1] [ 1] 8 [ ])

16 2
1 1[ ] [ ] ( [ 2] [ 2] 6( [ 1] [ 1]))

16 2

d n d n s n

s n s n d n d n d n

d n d n s n s n s n s n

= −
⎢ ⎥= + − + + − + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − − + − + + − +⎢ ⎥⎣ ⎦

 

SPC transform  : 
1 0 0

0 1

1 1

[ ] [ ] [ ]
1[ ] [ ] [ ]
2
1 1[ ] [ ] ( 8 [ 1] 4 [ ] 5 [ 1] [ 2] 6 [ 1]

16 2

d n d n s n

s n s n d n

d n d n s n s n s n s n d n

= −
⎢ ⎥= + ⎢ ⎥⎣ ⎦
⎢ ⎥= + − + + + − − − + + +⎢ ⎥⎣ ⎦

 

13/7-C transform (4, 2) : 

0 0 0 0 0

0

1 1[ ] [ ] (( [ 2] [ 1]) 9( [ 1] [ ]))
16 2
1 1[ ] [ ] (5 [ ] [ 1]) ( [ 1] [ 2]))

16 2

d n d n s n s n s n s n

s n s n d n d n d n d n

⎢ ⎥= + + + − − + + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − − + + − +⎢ ⎥⎣ ⎦

（

 

9/7-F transform (4, 4) : 

1 0 0 0

1 0 1 1

1 1 1

1

203 1[ ] [ ] ( [ 1] [ ])
128 2
217 1[ ] [ ] ( [ ] [ 1])
4096 2
113 1[ ] [ ] ( [ 1] [ ])
128 2

1817 1[ ] [ ] ( [ ] [ 1])
4906 2

d n d n s n s n

s n s n d n d n

d n d n s n s n

s n s n d n d n

⎢ ⎥= + − + − +⎢ ⎥⎣ ⎦
⎢ ⎥= + − − − +⎢ ⎥⎣ ⎦
⎢ ⎥= + + + +⎢ ⎥⎣ ⎦
⎢ ⎥= + + − +⎢ ⎥⎣ ⎦
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2.2 Computational complexity 

For the purpose of decreasing and analysing the computational 
complexity, all above transforms’ denominators can be written 

as 2N , which can be implemented as the arithmetic right shift 
of denominators by N bits. Using Booth’s algorithm (Booth, 
1951), all the multiplications in the numerators are converted to 
shift and add operations. Thus all the operations are only adds 
and shifts, which is simple to evaluate these transforms’ 
computational complexity. By assuming the one-level wavelet 
decomposition (in one dimension), the number of addition and 
shift operations required per two input samples for each 
transform is given in Table 1. 
 
 

Transform Adds Shifts Total 
S 2 1 3 
5/3 5 2 7 
2/6 5 2 7 
SPB 8 3 11 
9/7-M 9 3 12 
( 2, 4 ) 10 5 15 
( 6, 2 ) 16 9 25 
13/7-T 12 4 16 
5/11-C 10 3 13 
2/10 10 6 16 
5/11-A 10 3 13 
6/14 11 5 16 
SPC 10 5 15 
13/7-C 12 4 16 
9/7-F 26 18 44 

 
Table 1.  15 integer wavelets’ computational complexity 

 
 

3. INTEGER WAVELET TRANSFORM 
EXPERIMENTS 、ANALYSES AND SELECTION 

In this paper, above 15 reversible integer wavelet transforms are 
compared on the basis of their accuracy performance of 
maintaining the main original terrain characters in different 
resolutions when compressing the DEM data with multi-scale 
progressive method. The terrain accuracy parameters are 
selected elaborately to better indicate the accuracy performance 
of different wavelet transforms. At the same time, the lossless 
compression performance and computational complexity of 
these transforms are also considered. 
 
For evaluation purpose, the JPEG2000 open source software 
OpenJPEG lib (Janssens, 2007) was employed to compress 
DEM data losslessly. Because much of the function required for 
our analyses was not present, the original transform-related 
code in the software was replaced with new code to facilitate 
our testing. After the integer lifting transform, the coefficients 
with multi-resolution characteristic are bitplane and entropy 
coded with the resolution progressive compression character. 
 
The experimental data were from SRTM 90m DEM data (Jarvis 
et al. 2006). The projection is transverse Mercator and the grid 
interval is 90m×90m. Three sample DEM data DEM1, DEM2, 
and DEM3, with different terrain types and sizes, were 
employed. The top upper latitude and longitude of DEM1 are 
35。 N. and 107.5。 E., and the map sheet size is 512×512. The 
(35。 N., 110。E.) is the DEM2’s top upper coordinate, and the 

( 35。 N., 112.5。E) is the DEM3’s top upper coordinate. The 
DEM2 and DEM3 are all 1200 ×1800 in size. 
 
3.1 Accuracy performance experiments and analyses 

In order to better evaluate these transforms’ accuracy 
performance of maintaining the main original terrain 
characteristics in different resolutions, the accuracy 
performance indicators have to be selected elaborately. 
Currently there is no uniform measure criterion about the DEM 
accuracy. Liu et al. (2005) simply used the elevations’ 
maximum value, minimum value, mean value, and standard 
derivation, and these parameters were too simple. Tang et al. 
(2001) had put forward the concept of DEM terrain 
representation error (Et) and had investigated the generation, 
major factors, measurement and simulation of Et. Through 
many experiments and analyses, they revealed that the Et root 
mean square error (RMS Et) value has a positive quantitative 
relationship with the DEM resolution and the terrain roughness 
at global levels. The terrain roughness can be indicated by mean 
profile curvature. It was found that the RMS Et can be 
expressed as follows: 
 
 

RMS Et (0.0063 0.022) 0.0066 0.2415R V R= − + +  
 
 
Where  R = terrain resolution ( 10m≥ ) 
 V = mean profile curvature 
 
It has been proved that the digital matrix of the terrain profile 
curvature can be obtained by computing the slope of the 
terrain’s slope. Thus, the mean profile curvature can be 
obtained by computing the mean slope of slope (MSOS). 
Therefore, the MSOS value was chosen to be the most 
important parameter to measure the DEM accuracy 
performance. Other parameters measuring the accuracy 
performance are the elevation’s minimum value, maximum 
value, mean value, and standard derivation.  
 
Among these 15 integer wavelet transforms, although the 9/7-F 
transform was proved to be effective in lossy compression, but 
performed poorly in lossless compression (Michael et al., 2000). 
In addition, as shown in table 1, it needs 44 operations in each 
transform step and its complexity is the highest. What is more, 
through experiments on the DEM2 progressive compression 
using this transform, it was found that the dynamic range after 
reconstruction in each resolution was different far from the 
original data range. Thus, considering all above factors, the 9/7-
F transform wasn’t included in the succeeding experiments. 
 
First of all, the MSOS values, as the most important DEM 
accuracy measuring parameter, were computed and compared 
in the same resolution of all the 14 transforms to a certain tested 
DEM data. Each DEM data was decomposed to 4 resolutions 
with 3 levels wavelet decomposition of each transforms. For 
each DEM data, all the 3 resolutions’ MSOS values were 
computed and compared except the fourth full resolution, and 
these values are showed in one figure. Figure 1 (a), (b), and (c) 
show the experimental results of DEM1, DEM2 and DEM3 
respectively. To facilitate compare, the original resolution’s 
MSOS value is subtracted from each MSOS value in each 
resolution of each wavelet, and the original MSOS value is 
given in each figure. Because the RMS Et has a positive 
quantitative relationship with the MSOS value, the least the 
MSOS value, the least the RMS Et. Through compare, it could 
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be concluded that the 2/6 integer wavelet generally performs 
best considering all resolutions of all the tested data, followed 
closely by the 2/10 and S transforms. Then the next 3 

transforms in turn are the SPC, SPB, and (6, 2) transform in 
decreasing order of the RMS Et accuracy performance. 

 
 

 
 

(a) DEM1 
 
 

 
 

(b) DEM2 
 

 
 

(c) DEM3 
 

Figure 1.   The MSOS values comparing histogram of DEM1 (a), DEM2 (b) and DEM3 (c) 
712



Data Reso Wavelet Min Max Mean Std dev 
90m Original 600 1406 963.59 144.33 

S 596 1407 963.614 144.337
2/6 600 1401 963.332 144.207
SPB 585 1402 963.541 144.388
(6,2) 599 1406 963.993 144.549
2/10 600 1401 963.332 144.207

180 
m 

SPC 574 1417 963.555 144.505
S 592 1404 963.646 144.385
2/6 600 1390 963.028 143.863
SPB 594 1389 963.098 143.974
(6,2) 595 1399 964.774 144.969
2/10  600 1390 963.028 143.863

360 
m 

SPC 588 1392 963.107 144.051
S 590 1373 963.679 144.313
2/6 600 1367 962.659 142.977
SPB 600 1367 962.659 142.977
(6,2) 589 1363 966.190 145.644
2/10  600 1367 962.659 142.977

 DEM1 

720 
m 

SPC 600 1367 962.659 142.977
90m Original 182 2310 804.644 325.227

S 182 2301 804.299 325.073
2/6 182 2301 804.299 325.073
SPB 168 2328 804.423 325.312
(6,2) 182 2304 804.904 325.290
2/10  182 2301 804.299 325.073

180 
m 

SPC 144 2353 804.421 325.456
S 182 2294 803.915 324.634
2/6 182 2294 803.915 324.634
SPB 182 2307 803.954 324.787
(6,2) 184 2300 805.346 325.356
2/10  182 2294 803.915 324.634

360 
m 

SPC 168 2326 803.953 324.876
S 183 2265 803.487 323.501
2/6 183 2265 803.487 323.501
SPB 183 2265 803.487 323.501
(6,2) 180 2264 806.078 325.232
2/10  183 2265 803.487 323.501

 DEM2 

720 
m 

SPC 183 2265 803.487 323.501
90m Original 70 1768 622.237 450.837

S 70 1756 621.967 450.692
2/6 70 1756 621.967 450.692
SPB 70 1742 622.108 450.854
(6,2) 70 1754 622.846 450.904
2/10  70 1756 621.967 450.692

180 
m 

SPC 69 1786 622.085 450.970
S 70 1736 621.651 450.367
2/6 70 1736 621.651 450.367
SPB 70 1727 621.702 450.461
(6,2) 70 1744 624.010 451.005
2/10  70 1736 621.651 450.367

360 
m 

SPC 70 1718 621.689 450.530
S 70 1682 621.273 449.616
2/6 70 1682 621.273 449.616
SPB 70 1682 621.273 449.616
(6,2) 71 1696 626.225 451.013
2/10  70 1682 621.273 449.616

 DEM3 

720 
m 

SPC 70 1682 621.273 449.616
 

Table 2. Compare of elevation parameters 
 
In addition, the elevation parameters (the elevation’s minimum 
value, maximum value, mean value, and standard derivation) of 
the 2/6, 2/10, S, SPC, SPB, and (6, 2) transforms were further 

compared using the same method. Table 2 shows the compare 
of these elevation parameters in each resolution of each DEM 
data. To facilitate compare, the best value of each parameter in 
each resolution of each DEM data is underlined, boldfaced and 
italic. It is found that there is not a unique wavelet filter that 
performs uniformly better than all the others for all the three 
resolutions and all the DEM data. For example, the (6, 2) 
transform performs the best among the 6 transforms for the 
180m resolution of DEM2, but it performs poorly for the 360m 
resolution of DEM1. Some transforms have the same elevation 
parameters values for the same resolution of the same DEM 
data, and they are underlined, boldfaced and italic in table 2. 
Generally, the 2/6, 2/10, and S transforms have the close and 
even same elevation accuracy parameters and perform 
particularly well for all tested DEM data.  
 
3.2 Compression performance and computational 
complexity performance experiments and analyses 

The lossless compression performance and the computational 
complexity were also considered. The three DEM data were all 
compressed losslessly using the S, 2/6, 2/10, SPB, SPC and (6, 
2) transforms. The average compressed file sizes (KB) and 
average compressing ratios for these 6 transforms are shown in 
table 3. To facilitate comparing the computational complexity, 
table 3 also shows the numbers of addition and shift operations 
having computed in table 1. From table 3, It can be concluded 
that, in the lossless compression ratio side, on average, the 2/6 
transform increases 18.29% comparing with the S transform, 
decreases 4.54% with the 2/10 transform, decreases 1.69% with 
the SPB transform, decreases 5.96% with the SPC transform, 
and decrease 7.79% with the (6,2) transform.  
 
 
DEM data 

and 
statistics

Original
data 
size  

   
S  
 

 
2/6  
 

  
2/10 
   

  
SPB 

   

 
 SPC

  
(6, 2)
   

   DEM1   1140 91 77 72 75 71 70 
   DEM2   9081 919 775 740 756 725 715
   DEM3   8598 736 624 597 620 592 576
  average   6273 582 492 469.67 483.67 462.67 453.67
Com. Ratio  10.78 12.75 13.36 12.97 13.56 13.83
Oper. Num.     3   7  16  11 15  25 
 
Table 3. Compression and computational complexity compare 

 
Taking the computational complexity into consideration, while 
the (6, 2) transform has the best compression performance, its 
computational complexity is the highest. The 2/6 transform has 
low computational complexity while with high compression 
ratio. Comparing with the 2/6 transform, the 2/10, SPB and SPC 
transforms’ computational complexities are too high while with 
little increasing in compression performance. Although the S 
transform has the least computational complexity, its 
compression performance is too poor.  
 
Therefore, as a trade-off, the 2/6 transform is the best one in the 
computational complexity and compression performance. 
 
3.3 Experimental results conclusion 

Thus, considering all above factors, the 2/6 transform was 
chosen to be the most suitable one to the DEM multi-resolution 
representation and progressive compression. 
 
 

713

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

4. THEORETICAL ARGUMENTS  

Factors affecting these experimental results and performances 
of these transforms are also examined from theoretical sides.  
 
To the accuracy performance of maintaining the main terrain 
characteristics in different resolutions of different transforms, 
the most important affecting factor is the dynamic range of the 
forward transform coefficients in the low pass sub-band. The 
worst-case dynamic range growth of a particular transform is an 
approximate function of the 1-norm of its analysis filters. Since 
the different resolutions of the DEM data are owing to the 
successive wavelet decomposition of the low-pass sub-band 
signals, the 1-norm of the wavelet’ low pass analysis filters is 
the most important factor affecting the accuracy performance of 
different resolutions and different wavelet transforms. Typically, 
the coefficients obtained by the decomposition of analysis 
filters have a greater dynamic range than original samples. 
Among the 15 transforms, only the 1-norms of the S, 2/6, 2/10, 
SPB, and SPC transforms’ low pass analysis filters equal 1 and 
their transform coefficients have no dynamic range growth. 
This characteristic of these 5 transforms provides a greater 
possibility in obtaining excellent accuracy performance in each 
resolution of each DEM data. This point has been proved by the 
experimental results. For example, the S, 2/6, and 2/10 
transforms perform well in the accuracy performance for all 
tested DEM data.  
 
Besides the above factor, whether the transform has IIR filters 
is a negative factor to affect the accuracy performance. This 
point has been proved by the SPB and SPC transforms. 
Although they also have no dynamic range increase, they all 
have IIR filters. Thus they perform well to some data, but 
perform poorly to others.  
 
To the lossless compression performance and computational 
complexity, the affecting factors have been covered by many 
researches (e.g. Adams and Kossentini, 2000), such as the 
number of vanishing moments, the shape and the lifting steps of 
wavelets. These factors also have been proved by our 
experiments. For example, the 2/6 transform has better 
compression performance than the S transform, because the 2/6 
wavelet has 3 vanish moments while the S transform has only 1 
vanish moment in the high pass analysis filters.  
 
 

5. CONCLUSION 

Thus, through experimental data, analyses and theoretical 
arguments, the 2/6 integer wavelet was found to be the most 
suitable transform for the DEM multi-scale representation and 
progressive compression among the 15 reversible integer-to-
integer wavelet transforms compared. In addition, several 
factors affecting the accuracy performance and compression 
performance were also found, which could be a guide to design 
new and more effective integer wavelet transforms for the DEM 
multi-scale representation and progressive compression. In the 
future research, more DEM data with different terrain types and 
different sizes could be employed to strengthen the conclusion. 
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