

AN IMPROVED REAL 3D A* ALGORITHM FOR DIFFICULT PATH FINDING
SITUATION

Lei Niu, Guobin Zhuo

 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan, China, 430072

 - niuneilneo@vip.163.com

Commission Ⅳ, WG-IV-6

KEYWORD: GIS, Three-dimensional, A* Algorithms, Urban, Space

ABSTRACT:

Path finding requirement for people under restricted situation is difficult to meet. Traditional routing solution such as A* algorithm
is not suitable for the restricted area. For routing requirement under three dimensions is much more complex than under two
dimensions, the traditional A* algorithm should be improved to meet the routing requirement. The new path finding solution
concentrates on the experiment area’s composition and each movement’s moving style. The test result has shown that the improved
A star algorithm is superior to traditional A star algorithm in both storage consuming and time efficiency.

1. INTRODUCTION

Accompanying with the increasing activity of people among
cities and countries in modern society, the requirement for
navigating people’s movement grows with unexpected speed.
Researchers have paid more efforts on the developing of path
finding technology(Jones, 2001). It is necessary to have a look
on its history to understand path finding. From the nineteen
seventies, some scientists started research on the routing
solution for moving chess in the chessboard or moving
fragment in the puzzle map(Eklund et al., 1996). The reason of
research first starting on these subjects is that the problems
involved in these situations are easily abstracted to set up a
request for the path finding algorithm. And with the
development of path finding, several new classical routing
algorithms have been introduced to generate better routing
solution. Dijkstra algorithm is the most famous one, which
evaluates the moving cost from one node to any other node and
sets the shortest moving cost as the connecting cost of two
nodes(Eklund et al., 1996).

Nearly at the same period Best-First-Search algorithm is also
introduced in the community. Quite different from Dijkstra
algorithm, Best-First-Search algorithm estimates the distance
from current position to target, and chooses the step more
approaching target(Amit). With the path finding situation’s
difficulty growing, the classical path finding algorithms need to
be improved to meet the new requirement. Thus a new path
finding algorithm named A* algorithm is introduced. A*
algorithm combines the advantages of Dijkstra algorithm and
Best-First-Search algorithm, for the A* algorithm not only
intends to take shortest step among each movement, but also
cares about the choosing step whether on the direction which is
just from source to target(Jones, 2001).

With the development of A* algorithm, improving A*
algorithm’s efficiency has become the key point of research.
For A* algorithm is a breadth first algorithm, it consumes huge
memory to keep the data of current proceeding nodes(Nelson
and Toptsis, 1992). During the traversing of all grids which are

possible to be placed on the optimized path, a huge size of stack
is needed to contain the considering grids. Beside developing
A* algorithm’s own efficiency, new methods of using A*
algorithm are also considered by the researchers. For example
bidirectional A* algorithm searching method has been used to
reduce the time cost of A* algorithm(Nelson and Toptsis, 1992).
Compared to classical A* algorithm’s searching from source to
target, bidirectional A* algorithm searches nodes not only from
source to target, but also from target to source. The searching
stops immediately when the two direction’s searching
progresses meet each other in bidirectional A*
algorithm(Nelson and Toptsis, 1992).

Accompanying the three dimensional trend in computer society,
three dimensional A* algorithm’s development has caught more
attentions. To solve three dimensional path finding problem,
some path finding solution maps three dimensional problem
area to two dimensional expression in order to use traditional
A* algorithm solving the path finding request(Makanae and
Takaki, 2004). Although the method of mapping 3D to 2D is
working for path finding requirement under some simple 3D
situations, the mapping method could not easily be used to
finish path finding under complex situations. For example in the
restricted spatial situations such as underground and inner
building, the overlapping layers may appear frequently, and
these situations seems impossible to take traditional A*
algorithm solution, for mapping 3D into 2D and deriving the
optimum path are nearly impossible under these special
circumstances Thus A* algorithm should be improved to meet
these routing requirements.

The three dimensional A* algorithm is required to work the
routing problem out under restricted situations. Several certain
modifications should be taken for standard A* algorithm and a
new improved 3D A* algorithm is introduced.

 927

2. ALGORITHM

The improved 3D A* algorithm is based on a classical A*
algorithm theory, which is a heuristic method to find optimum
path from starting position to destination. A* algorithm’s main
idea is to treat the testing area as a grid collection and generate
the optimized path. In the standard A* algorithm each
movement along the optimized path is evaluated by the formula:

The routing solution described above has many key points. The
moving style’s change in 3D situation is the first key point. 3D
A* algorithm is much different from 2D A* algorithm, and the
reason is the increasing quantity of styles for every single
movement. In traditional 2D routing progress, only horizontal
moving condition is considered. Thus there are only four basic

moving styles in 2D situation, which are moving forward,
moving backward, moving left and moving right; and there are
other four complex moving styles which are moving forward
plus left, moving forward plus right, moving backward plus left
and moving backward plus right. While the traversing styles
between cells in 3D contains vertical moving besides horizontal
moving. So the moving styles have been increased from eight to
twenty six in 3D routing situation, which contains eight styles
in horizontal moving and eighteen new moving styles brought
up by the introducing of vertical moving. The eighteen new
styles are vertical up, vertical down, vertical up plus eight types
of horizontal moving introduced by 2D situation and vertical
down plus the eight types horizontal moving.

 (1) F G H= +

In the formula, represents the total moving cost from source
to target, while G represents the moving cost from the source
to current position, and refers to the estimated moving cost
from the current grid to target(Jones, 2001). The open list keeps
grids which are still in the evaluating process by the path
finding algorithm, and closed list keeps grids which have
already been evaluated by the path finding solution. A*
algorithm searches the whole area by maintaining an open list
and a closed list to find an optimized path(Amit).

F

H

In the new improved A* algorithm, the basic unit used is cell,
and the spatial object which contains specific type of cell is
called region. Cell is an object which contains a specific
quantity of space. As the objects in three dimensions does not
only have neighbours on the same height level, but also has
neighbouring objects above and below, the consideration of
cell’s shape in three dimensions is critical. The reason is that
the shape of cell will directly define the number of cell’s
neighbouring units. In this experiment, the cell takes cube shape.
Thus every movement of the routing solution is represented by
transportation between cube shaped cells. Some constraints are
made for the routing algorithm, according to the situation in the
real world. For example by the consideration of the gravity on
earth, it is not intelligent to allow moving a large distance in
vertical direction, so the algorithm rejects any vertical moving
request which are not acceptable under normal situations.

Improved A* path finding starts from initializing the testing
area with a format which computer could recognize. Firstly
testing area is set up by cell which is suitable for the problem
representation, and secondly cells of same type compose region.
After setting up the regions in the experiment area, the path
finding for the whole area can be divided into routing work in
each region. So the third step of the new routing algorithm is to
determine which region will be used to set up the best path, and
a judging algorithm is used to find involved regions. The
judging algorithm finds the regions which are more
approaching the segment of optimum path between the starting
position and end position at the fourth step. After finding
candidate regions along the optimized path, a testing algorithm
is used to find out whether chosen regions can truly set up a
path leading people from source to target. If there are several
compositions of regions along the optimized path, which
composition is best among these candidate compositions will be
chosen by a evaluation algorithm.

The increasing number of moving styles in 3D situations does
not only cause more choices in moving step, but also change the
routing algorithm’s time efficiency and memory cost. As is
known to all, A* algorithm maintains an open list and a closed
list. The closed list contains the units which are chosen or
rejected to be placed on the result path, while the open list
keeps the neighbours of the unit which are being
considered[red]. With the extension of dimension, the number
of units which are possibly involved in the consideration of
each moving step will be increased by 3.125 times maximally.
The increasing moving choice will directly affect the open list’s
size. Under the most pessimistic situation, the open list could
grow with the power of 3.125. The same problem arises with
the time spent for the routing process. For the options of next
moving step are increasing, the algorithm will consume more
CPU computing time to find the best choice of next movement.
Beside the probably obvious storage and computing time’s
increasing of the path finding algorithm, there are other
problems lying below the dimension increasing. The most
serious problem is that the cache hit rate will become much
lower in the 3D routing algorithm. The decreasing cache hit rate
is caused by the dimming possibility of the next moving step
whether along the optimum path. For the moving options have
been 3.125 times larger under the worst situation, the chance of
choosing the best moving option is decreased by 3.125 times
based on the 2D situation. And the total cache hitting possibility
would be very pessimistic according to the huge choice
increasing.

The second key point is that fortunately the improved 3D
routing algorithm will somehow overcome the shortness caused
by increasing moving styles under 3D situations. For the testing
area will be divided into several regions for path finding
algorithm, the detail path finding work is limited in each region
and region size is indeed very small compared to the total
experiment, so the total path finding process will not suffer a lot
on the storage cost,. And the improved 3D routing algorithm
also brings other benefits by using region. For example for the
path searching in each region is independent, the paralleling
computing can also be introduced to the path finding solution,.
Thus the time cost of total path finding solution could be
minimized.

3. APPLICATIONS AND EXPERIMENTS

The experiment area used to testify the improved real 3D A star
algorithm is part of Shibuya station. The station is not only used
for underground transportation, but it also contains bus stop,
supermarket and railway station. The total area is composed by
three main layers which cover thousands square meters area.
The experiment area used has two parts, which is part of first
layer and second layer of Shibuya station. The nodes

 928

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

represented in the Figure 1 are used to help people get general
view of the experiment area. Compared to the traditional A*
algorithm using grid description of the experiment area, the 3D
object “cell” is used in improved 3D A star algorithm. The cell
used here is a cuboid shape having 100cm width by 100cm’s

width with 250cm height. The reason that the height of cell is
just the half of the layer is that one physical layer will contain
two layers of cells, and the cell layer near ceiling has the
function of blocking movement which is not reasonable under
normal circumstances.

Figure 1. The region division of the testing area

Intending to get good testing result, total experiment area is
divided into four regions. Region A contains the area which is
selected by the rectangle “A” in Figure 1, and region A doesn't
include the area around node 9 and node 10. Region B contains
the area which is selected by the rectangle “B” in Figure 1, and
region B includes the area around node 9 and node 10. Region
C contains the area which is selected by the rectangle “C” in
Figure 1. Region D contains the area which is selected by the
rectangle named after “D” in Figure 1, and region D doesn’t
include the area contained in the “C” rectangle below. The
improved A* algorithm first decides the regions which shall be
involved in the optimized path solution, and then improved A*
algorithm finds the joint nodes which shall also be used. In this
test, starting position is set at node 2, and the ending point is set
at node 3. Thus the region A, region B and region D should be
taken to form up the optimum path, for that connecting line of
node 2 and node 3 cross these three regions.

To generate a clear view of improved 3D A* algorithm’s
performance, we introduce the path finding result by traditional
A* algorithm as the comparing object. Being different from the
improved A* algorithm, the optimized path solution provided
by traditional A* algorithm doesn’t care about the region
questions caused by the “region” idea such as travelling across
region boundaries. Although the routing solution generation
theory in traditional A* algorithm is simple, the storage space
cost and CPU cost are massive. In the experiment, the cache of
heap for storing searching node needs to be no less than the
maximum number of nodes. So the detail travelling matrix of
whole test area needs 30 × 117× 3 elements by using
traditional A* algorithm. While the improved A* algorithm
only takes region A, region B and region D into consideration
instead of the whole area. Region A travelling matrix contains
17 × 31 × 3 elements; region B travelling matrix contains 14
× 18 × 3 elements, and region D travelling matrix contains 24
× 85 × 3 elements. All these data is contained in Table 1.

The searching time cost is 0.314 milliseconds through the
whole area by traditional A* algorithm. While searching path in
region A costs 0.066 milliseconds, and searching path in region
B and region D cost 0.032 milliseconds and 0.184 milliseconds
by improved A* algorithm. The region switching time cost is
nearly definite time, and it can be ignored in the routing
solution. It is obvious that the sum of time cost in region A,
region B and region D by improved A* algorithm is smaller
than cost of searching in the total experiment area by traditional
A* algorithm. And there is another good news:the paralleling
computing ability of the improved A* algorithm makes it
possible that the summary time cost only equal the largest time
cost among the involved regions, which means the total time
cost is equal to region D’s searching time 0.184 milliseconds in
the experiment.

Not only the computing time has been shortened for the
introducing of improved A* algorithm, but also the storage cost
is reduced. The static cost of storing elements in traditional A*
algorithm takes 84240 bytes. The new improved A* algorithm
static storage cost is 6324 bytes for region A, 3024 bytes for
region B and 24480 bytes for region D. The total storage cost of
these three regions is 33828 bytes. The dynamic cost is
represented by the cache size of temporary storage heap in our
test, and it means that in the A* algorithm at least three times
storage space of static storage space need to be reserved for
open list. And that means 126360 bytes for the experiment’s
total area dynamic using in this article. And under paralleling
situation the improved algorithm only needs the dynamic
storage space of the biggest region’s dynamic storage cost,
which means the improved algorithm only takes 73440 bytes
space for temporary using. The space dividing of experiment
area also enables the routing solution to face the emergency
situations. For example, if there is an earthquake happens in the
experiment area and disables travelling in region B, then the
routing algorithm only changes the travelling cost in region B to

 929

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008

make region B unable to be passed and the improved routing
algorithm will take region C to travel to the target instead.

There are still many ways to optimize the improved A*
algorithm. For example region used in the improved A*
algorithm can be taken place by layer. The layer is a concept
that owns certain cells which have same vertical attribute and
are in one certain horizontal scope. For the normal moving style
is horizontal to layer, the path finding algorithm only need to
consider moving in x and y axes’ directions. And the real path
finding process can be optimized to search only 8 neighbouring
cells of current position for vertical moving appears nearly
impossible in layer. And this more restricted moving condition
could minimize the cost of CPU and memory used on many
uninvolved nodes in path finding process.

4. CONCLUSION

After the experiment in the test area, advantages of the
improved A* algorithm has been demonstrated:
1) As is known to all, A* algorithm’s open list consumes

huge size of cache. Although effort has been made to
reduce the cache cost of A* algorithm in the past, the
result is not very significant. The region using idea in the
improved algorithm partly overcome the cache consuming
shortage of A* algorithm. Because of introducing of
“Region”, smaller amount of storage is provided for each
region’s processing.

2) Paralleling computing of the algorithm calculation is
introduced by using the improved A* algorithm. For each
region is an independent path finding area, it makes
program own the ability to use multi-thread to calculate

each segment of the optimum path.
3) The “Cell” structure makes the improved A* algorithm

works more flexibly than ever. Any change of the
corresponding territory will be represented in the cell.
Small modification in the experiment area will only affect
the related cells in one region instead of reconstructing
the total problem area.

REFERENCE

Amit, Amit's Game Programming Information. http://www-cs-
students.stanford.edu/~amitp/gameprog.html. (accessed 28
Jan.2008)

Eklund, P.W., Kirkby, S. and Pollitt, S., 1996. A Dynamic
Multi-source Dijkstra' Algorithm for Vehicle Routing. In: N.a.
Jain (Editor), Conf. on Intelligent Information Systems,
Australian New Zealand.

Jones, J.H., A* Tutorial.
http://www.geocities.com/jheyesjones/astar.html. (accessed 28
Jan.2008)

Makanae, K. and Takaki, M., 2004. Development of the 3-
Dimensional Urban Spatial Data Model and Application to the
Pedestrian Navigation System. ITS シンポジウム, 3.

Nelson, P.C. and Toptsis, A.A., 1992. Unidirectional and
Bidirectional Search Algorithms. Digital Object Identifier, 9(2):
77-83.

Area Routing
Solution

Matrix
Elements
Number

Static
Storage
Cost

Reserved
Dynamic
Storage
Cost

Time
Cost

Total
area

Standard
3D A*
algorithm

30 × 117
× 3

42120
bytes

126360
bytes

0.314
millis
econd
s

Region
A

Improved
3D A*
algorithm

17 × 31
× 3

6324
bytes

18972
bytes

0.066
millis
econd
s

Region
B

Improved
3D A*
algorithm

14× 18×
3

3024
bytes

9072
bytes

0.032
millis
econd
s

Region
D

Improved
3D A*
algorithm

24 × 85
× 3

24480
b1ytes

73440
bytes

0.184
millis
econd
s

Table 1. Testing result of the different A* algorithm

 930

