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ABSTRACT: 
 
Traditional approaches to accuracy assessment are inadequate for object oriented image processing.  We tested some measures to assess 
the accuracy of object based image segmentation in a supervised context.  The measures quantify the extent to which objects in the 
segmentation match training objects in terms of over-segmentation, under-segmentation, and distance to a perfect match.  Using high 
resolution digital aerial photographs over an urban setup, we obtained segmentation results for a variety of parameter combinations using 
two software packages: eCognition and ASTRO.  We compute the accuracy measures using three types of objects: vehicles, trees and 
buildings.  The measures were used to compare the software, identify ideal parameter combinations, and identify objects that each 
software is better at extracting from the images.  The measures are shown to be an intuitive, useful technique for consistency checking 
different segmentation results and assessing segmentation accuracies among a large set of disparate segmentation results. 
 
 

INTRODUCTION 

In object based image processing, the first step is generally a 
segmentation of the image of interest.  A wide variety of 
segmentation results may be obtained through different parameter 
combinations or different segmentation software.  Prior to 
classification or even to training of a suitable classifier, one of the 
segmentation results must be chosen.  In this paper, we describe 
well defined measures that can be used in the identification of a 
“best” segmentation and the “best” objects within that 
segmentation for training a classifier.  These measures are 
applicable in the supervised setting only, and “bestness” is 
therefore relative to a set of pre-defined training objects (assumed 
polygons) over the image of interest.   
 
Assume first that the landscape of interest is a finite population of 
objects (Bian 2007).  The spatial information about these objects 
is useful in the ultimate classification of the object (Gong and 
Howarth 1990).  It is obvious that exact representation of the 
objects in the segmentation is important, since this shape 
information will eventually be presented to a classifier for the 
identification of a pattern.  The accuracy of the classification is 
thus dependent on the accuracy of the shape information 
submitted to the classifier.  Measures of the segmentation result 
are therefore relevant to the interpretation and optimization of 
ultimate classification accuracy.  The measures we tested are not 
measures of classification accuracy, but are related.  Assuming 
that accuracy assessment is conducted with statistical rigor, a 
probability sample will be obtained on the population of objects 
(Stehman and Czaplewski 1998, Stehman 1999).  If the population 
is assumed to be represented by the segmentation result and a 
simple random sample is used to generate accuracy statistics, then 
the accuracy of the shapes has been completely ignored!  On the 
other hand, if a sample is taken from the landscape directly (e.g. 

human delineated training polygons are used) and compared to the 
segments, then areas of intersection between mapped classes and 
reference classes affect the resultant accuracy.  The accuracy of 
the segmentation will thus directly influence the classification 
accuracy, unless classification is performed on object primitives, a 
different problem discussed below. 
 
There are a large number of methods with which to judge 
segmentations (Zhang 1996).   This study is focused on the 
scenario in which a set of training objects is available for a static 
image and segmentation results are to be compared to these pre-
defined training objects.  Unlike unsupervised evaluation of 
segmentation results (Levine and Nazif 1985, Ng and Lee 1996, 
Borsotti et al. 1998, Chabrier 2006), spectral aspects (such as 
homogeneity within segment or within class) of the resultant 
segments are not considered and the quality of segments is 
evaluated solely in respect to the shape of training objects.  In this 
context, a segmentation result should contain segments that match 
the training objects.  For automatically checking this, a simple, 
intuitive measure of polygon matching can be computed.  This 
measure relies on the observation that there should be a one-to-
one correspondence (in area) between human identified objects 
(training objects) and segments.  A measure of this 
correspondence was first proposed by Levine and Nazif (1982) 
and demonstrated by Yang et al. (1995).  Moller et al. (2007) 
describe a similar measure called Relative Area (RA) which relies 
on the ratio of intersected area to segment and reference object 
area.  We present the intuition behind this measure, a refinement 
of its computation, and a case study using high resolution urban 
imagery. 
 

SEGMENTATION GOODNESS MEASURES 
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In a supervised interpretation of the segmentation result, let X = 
{xi: i=1…n} be the set of n training objects, assumed polygons, 
relative to which the segmentation is to be judged.  Let Y = {yj: 
j=1…m} be the set of all segments in the segmentation.  Let Ỹi be 
a subset of Y such that: 
 

Ỹi = {yj : area(xi ∩yj)≠0}. 
 

For convenience, let area(xi ∩ yj) = the area of the geographic 
intersection of training object xi and segment yj and area(·) be the 
geographic area of ·.  For each training object xi, the following 
subsets of Y exist: 
 

Ya = {all yj where the centroid of xi is in yj} 
Yb = {all yj where the centroid of yj is in xi} 

   Yc = {all yj where area(xi ∩ yj) / area(yj) > 0.5} 
  Yd = {all yj where area(xi ∩ yj) / area(xi) > 0.5} 

 
The union of these subsets is the subset Yi* = Ya ∪  Yb ∪  Yc∪  
Yd where Yi* is assumed to be the subset of segments that are 
relevant to training object xi.  Processing over Y* is designed to 
minimize if not eliminate the effects of spurious intersections with 
very small parts of very large segments.  Define #( Yi*) = pi and 

∑
= ni

ip
...1

= P.  Thus, for each training object, there are pi segments 

deemed relevant to it.   
Define the following properties of the segments in Yi*: 
 

OverSegmentationij = 1 - area(xi ∩ yj) / area(xi). 
UnderSegmentationij = 1 - area(xi ∩ yj) / area(yj). 

 
Here, we have simply rescaled Moller et al. (2007) RAsub (as 
OverSegmentation) and RAsuper (as UnderSegmentation) in order 
to facilitate their combination and minimization on a [0,1] scale.  
We have also defined them on the Y* subset of intersecxted 
segments.  Observe that OverSegmentation and 
UnderSegmentation are properties of the segments, but can be 
averaged over the pi segments associated with each training object, 
and in turn averaged over the n training objects.  Alternatively, 
OverSegmentation and UnderSegmentation can be averaged over 
the P segmentation objects that interact with the set of all training 
objects, X.  The difference is related to whether these measures 
should be weighted by the training objects, larger or more 
extensive training polygons being likely to interact with more 
segments than smaller ones.  The un-weighted version first 
averages OverSegmentation and UnderSegmentation for each 
training object, then averages over all the training objects.  Both 
the weighted and un-weighted averages can be used as indicators 
of overall segmentation quality relative to the training set X.   
 
The range of OverSegmentation and UnderSegmentation is in 
[0,1], where OverSegmentation=0 and UnderSegmentation=0 
define  a perfect segmentation, where the segments match the 
training objects exactly.  Obviously, imperfect segmentations, as 
defined here, could result from poor delineation of training objects, 
in combination with poor segmentation.  Assuming that the 
training objects in X are exact, OverSegmentation and 
UnderSegmentation also have the nice property of identifying 
segments that match the training objects more or less perfectly.  
Combining the measures could result in a method to sort or rank 
the segments (for classification purposes) in terms of agreement 
with the furnished training objects. 

 
The two dimensional space defined by OverSegmentation and 
UnderSegmentation is the unit square S.  As a result of the fact 
that the ideal segmentation result is a point at the origin in this 
space, the Euclidean norm of a vector with coordinates 
(OverSegmentation,  UnderSegmentation) is a measure for the 
quality of a segmentation (Levine and Nazif (1982) first propose 
this and an absolute value based combination of metrics).  Let the 
“distance” index D be as follows: 

22 ntationUnderSegmetationOverSegmenD +=  
This index D should be interpreted as the “closeness” in the space 
defined above to an ideal segmentation result, in the context of a 
pre-defined training set.  In this context, D is in [0, 21/2].  The 
distance index can be defined for each segment yj in Y*, averaged 
over each training object xi, or averaged over the set of all training 
objects X to produce a composite index for the entire segmentation 
result. 
 

METHODS 

The imagery we used is a 3 band (RGB) aerial image of an urban 
area in San Francisco, California, USA.  Resolution is 
approximately 0.174 meters.  Using the imagery and parameter 
combinations described by Holt et al. (under review), we obtained 
segmentation results for two different software packages: 
eCognition (http://www.definiens.com) and ASTRO 
(http://berkenviro.com/berkeleyimgseg/).  Both of these programs 
use a region merging technique to obtain a complete spatial 
partition of the input image pixels.  ASTRO is developed based on 
the region merging algorithms described in Benz et al. (2003). 
 
Both software packages perform segmentation and export the 
results as polygons in the ESRI shapefile format.  In total, 150 
parameter combinations were examined for scale, smoothness and 
color according to {10, 20, 30, 40, 50}x{0.1, 0.3, 0.5, 0.7, 
0.9}x{0.1, 0.3, 0.5, 0.7, 0.9}, respectively.  Using the resultant 
shapefile from each parameter combination, we computed the 
measures in the Java environment using JTS 
(http://www.vividsolutions.com/jts/jtshome.htm) and GeoTools 
(http://geotools.codehaus.org/). 
 
For training sets, we digitized 119 vehicles (cars and trucks) as 
simple rectangles, 48 tree crowns, and 36 building rooftops for a 
total of 203 training shapes.  Relative to these training object sets 
(vehicles, trees, buildings and combined), we computed 
OverSegmentation and UnderSegmentation for each combination 
of parameters in each software package and examined the 
goodness D when averaged over the n training objects in X and 
averaged over yj ∈  Yi*, ∀ i,j.  Resultant segmentation results 
were visually examined and interpreted.  The results are reported 
below.   
 

RESULTS 

Figure 1 shows the overall segmentation results when 
OverSegmentation and UnderSegmentation are averaged over yj 
∈  Yi*, ∀ i,j (left) and when OverSegmentation and 
UnderSegmentation are first averaged for each training object, 
then averaged over all training objects (right).  The behavior of 
eCognition and ASTRO in response to parameter variation is 
illustrated in Figure 1. 
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a. Vehicles, average of all segments in Y* 
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c. Buildings, average of all segments in Y* 
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e. Trees, average of all segments in Y* 
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g. Average of all segments in Y* for all 
training objects 

Figure 1.  The segmentation results when averaged over yj ∈  Yi*, 
∀ i,j.  ASTRO = □, eCognition = ♦. 
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b. Vehicles, average of training objects 
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d. Buildings, average of training objects 
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f. Trees, average of training objects 
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h. Average over all training objects 

Figure 1. The segmentation results when averaged over xi,∀ i.  
ASTRO = □, eCognition = ♦. 
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For vehicles (Figure  1 a and b), eCognition is more responsive to 
parameter settings, judging from the more pronounced curvature 
in the distribution of parameter combinations over S.  It is also 
readily apparent that eCognition produces results closer to an 
optimal segmentation near the origin.  For larger training objects, 
such as buildings (Figure 1. c and d), the opposite is true, with 
ASTRO producing a result closer to the origin (smaller D).  The 
software is less distinguishable from the other training object sets 
(trees, Figure  1 e and f; and combined vehicles, buildings and 
trees, Figure  1 g and h). 
 
For both ASTRO and eCognition (relative to combined vehicles, 
buildings and trees), the parameter combinations with the lowest 
D values differ from the combinations with the lowest D when 
averaged over training objects.  For ASTRO, the scale=50, 
color=0.1, smoothness=0.5 combination minimizes D while the 
scale=40, color=0.1, smoothness=0.5 minimizes D when it is 
computed by averaging over training objects.  For eCognition, the 
scale=60, color=0.3, smoothness=0.3 combination minimizes D 
while the scale=40, color=0.3, smoothness=0.1 minimizes D when 
it is computed by averaging over training objects.  The 
segmentations that result from parameter combinations that 
minimize D are shown in Figures 2 and 3 for a subset of the image 
we used.  Figure 4 shows the training objects in the same subset.  
The results are quite obviously qualitatively different, suggesting 
that visual interpretation of the segmentation is relevant to the 
ultimate selection of a particular parameter combination or 
segmentation software. 
 

 
Figure 2.  The ASTRO result that minimizes D: scale=50, 

color=0.1, smoothness=0.5. 
 

 
Figure 3.  The eCognition result that minimizes D: scale=60, 

color=0.3, smoothness=0.3. 
 

 
Figure 4.  The training shapes corresponding to the area in 

Figures 2 and 3. 
 
 

DISCUSSION 

The problem of finding an optimal configuration of parameter 
settings has been addressed by Holt et al. (accepted).  The index D 
can be used for this purpose, though it not been attempted for this 
study.  The procedure involves fitting a convex function of scale, 
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smoothness and color to the observed D, then minimizing the 
function.   
 
The evaluation of segmentation relative to a training set is simply 
a quantitative measure of the goodness of polygon matching.  It 
does not necessarily imply a good classification result.  This is 
particularly true in the event that a classification of primitives can 
be used as a preliminary step to the ultimate assembly of objects 
(see, for instance, Pichel et al. 2006).  For example, consider an 
evaluation of segmentation results relative to the ultimate 
classification of an entire vehicle.  This discounts the prospect of 
first classifying vehicle parts such as windshield, hood, roof, etc., 
then assembling these parts into complete cars through dissolve 
operations or other adjacency rules.  However, the method 
described here could easily be applied to such a scenario through 
the provision of training sets for the individual car parts, then 
evaluating the goodness of match between the segmentation and 
the supplied primitives.  These hierarchical relationships between 
objects at different spatial scales could be more easily exploited 
using OverSegmentation and UnderSegmentation.  With any 
software that produces nested segmentations at different scales (as 
both ASTRO and eCognition do), the D measure could be 
harnessed to compare predefined object primitives to a wide 
variety of segmentations at different scales.  In this way, optimal 
scales for analysis could be identified by comparing the training 
objects to different levels of the hierarchy. 
 
The advantage of the measures we describe is that a quantitative 
index can be generated relative to any set of training objects of 
interest.  The measures will also provide useful diagnostic 
information for the efficacy of the segmentation relative to the 
different object types.  This characteristic of D is illustrated by 
Figure 1, in which the performance of the different software is 
shown to be very different when supplied with different kinds of 
training objects. 
 
In the event that two segmentation results have similar values of D, 
the setup described here can be extended to incorporate additional 
indices.  However, the indices should be scaled to [0,1] and 
increase the dimension of S, with the Euclidean norm D calculated 
accordingly.  The distribution of D in S is of great interest and 
should be defined in order to determine the significance of 
differences between segmentation results.  Simulation studies are 
needed to identify this distribution.   
 
 

CONCLUSION 

We have presented and demonstrated measures that facilitate the 
identification of optimal segmentation results relative to a training 
set.  We propose that these measures are not only useful for the 
selection of segmentations from an array of choices, but also have 
utility in reporting the overall accuracy of segmentation, again 
relative to the set of supplied training objects.  This setup is useful 
in the case where pre-defined objects are to be located and 
extracted (through a classification algorithm) from an image of 
interest.  The objective selection of a segmentation result (i.e. not 
based on “expert opinion,” “visual interpretation” and the like) 
necessitates such an approach.  Additionally, the growing supply 
of segmentation software means that inter-comparisons such as 
that presented here could benefit from a set of quantitative, well 
defined measures that communicate the effectiveness of the 

software to find objects of interest.  This paper presents an 
approach that provides an initial basis for the consistent 
comparison of segmentations resulting from varying parameters 
and software. 
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