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ABSTRACT: 

 
High resolution (H-res) satellite sensors provide rich structural or spatial information of image objects. But few researchers study the 
feature extraction method of H-res satellite images and its application. This paper presents a very simple yet efficient feature 
extraction method that considers the cross band relations of multi-spectral images. The texture feature of a region is the joint 
distributions of two texture labelled images that are calculated by its first two principal components (PCs) and the spectral feature is 
that of grayscale pixel values of its two PCs. The texture distributions operated by a rotation invariant form of local binary patterns 
(LBP) and spectral distributions are adaptively combined into coarse-to-fine segmentation based on integrated multiple features 
(SIMF). The performance of the feature extraction approach is evaluated with segmentation of H-res multi-spectral satellite imagery 
by the SIMF approach. 
 
 

1.  INTRODUCTION  

High-resolution (H-res) satellite images have become 
commercially available and have been increasingly used in 
various aspects of environmental monitoring and management. 
The fine resolution satellite imagery makes it possible to detect 
the land cover/use type in detail. But on the other hand as the 
H-res satellite sensors increase the within field spectral 
heterogeneity and the traditional pixel-based image analysis 
method will produce many salt and pepper image areas. Object 
based image analysis (OBIA) method that makes it possible to 
get inferences based not only on spectral properties, but also on 
information such as object shape, texture, spatial relationship as 
well as human knowledge are proving to be useful in this high 
spatial resolution world.  A necessary prerequisite for OBIA is 
successful image segmentation. 
 
As the traditional pixel-based segmentation/classification 
methods have some limitations, especially when they are 
applied to H-res satellite imagery. Recently, H-res satellite 
image segmentation has drawing considerable attention. Several 
new segmentation methods have been examined by a number of 
authors. The fractal net evolution approach (FNEA) is 
embedded in the commercial software environment (Hay et al. 
2003) and was thoroughly introduced by Baatz and Schäpe 
(2000). Various research projects have demonstrated the 
potential of this multi-scale segmentation approach (Hay et al. 
2003), yet it still suffers from some limitations, i.e., it cannot be 
fully exploited because of lack of a theoretical framework and 
users have to find useful segmentation levels by ‘trial and error’ 
(Hay et al. 2003).  Pesaresi and Benediktsson (2001) proposed a 
new morphological multiscale segmentation method based on 
the morphological characteristic of connected components in 
images, which is however only suited for complex image scenes 
such as city area of H-res satellite images. Examples of more 
recent approaches include segmentation by the floating point 
based rain-falling watershed algorithm and a region adjacency 
graph based multi-scale region merging (Chen et al. 2004; Chen 

et al. 2006), multiscale object-specific segmentation (MOSS) 
(Hay et al. 2005), segmentation based on the Gaussian Hidden 
Markov Random Field model (Gigandet et al. 2005) and 
automatic segmentation of H-res satellite imagery by 
integrating texture, intensity and color features (Hu et al. 2005).  
 
There have been some research on segmentation method based 
on combining multiple features (Chen and Chen 2002; Hu et al. 
2005). Chen and Chen (2002) evaluated a color texture 
segmentation approach combining color and local edge patterns 
by constant weights, however the method only performs well on 
some simple color texture images and natural scenes and it is 
not suitable for complex H-res satellite images. The approach 
presented by Hu et al. (Hu et al. 2005) performs relatively well 
on H-res satellite imagery but the weights of three features are 
hardly to determine. As in our previous research work (Wang et 
al. 2007), SIMF by the features including texture and spectral 
distributions that are described in the paper and colour feature 
which is the Hue/Saturation histogram and by the weight 
combination similar to  (Hu et al. 2005) performs well on few 
images. So we will make some comparison with segmentation 
approach combing the texture and feature distributions. 
 
In segmentation based on integrated multiple features (SIMF), 
the choices of highly discriminating features (Ojala and 
Pietikainen 1999) and how to combine the features are the most 
important factors for a successful segmentation. In this paper, 
we present a region-based unsupervised segmentation method, 
which utilizes features integrating texture and spectral 
distributions. The two features are then used to measure the 
similarity of adjacent image regions during the coarse-to-fine 
segmentation process (Chen and Chen 2002; Hu et al. 2005; 
Ojala and Pietikainen 1999). The main objective of this 
research is to examine the ability of the new feature extraction 
method in segmentation of H-res satellite images and easiness 
of SIMF by two features. 
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The paper is organized as follows. In section one some 
background and the objective of this research are introduced. 
Section two introduces the feature extraction method in this 
paper. The segmentation methodology is presented in section 
three. In section four, we carry out several experiments and 
demonstrate the segmentation results. Section five concludes 
the paper with discussion and conclusion. 
 
 

2. FEATURE DESCRIPTION 

In the whole segmentation process, we utilize a novel texture 
and spectral feature extraction method which considers the 
cross-band relations between pixels. Principal Component 
Analysis (PCA) is adopted in this study to get rid of redundant 
information and make it convenient to extract texture features 
of multispectral images. More specifically, we obtain the first 
two principal components (PCs) of multispectral (i.e. blue, 
green, red and near infrared) H-res satellite imagery through 
PCA. They collect most of the information of the H-res 
imagery. Then the texture and spectral information is calculated 
from the transformed PCs. The distributions of texture and 
spectral information are denoted by discrete two-dimensional 
histograms whose two dimensions correspond to the two PC 
variables respectively.  
 
 
2.1 LBP texture operator  

The texture analysis operator of LBP (Local Binary Pattern) 
was first introduced as a complementary measure of local image 
contrast by Ojala et al. (Ojala et al. 1996) and was extended by 
subsequent studies. Due to its major advantages on simple 
theory, computational simplicity and robustness to rotation and 
monotonic transformation of gray scale, it has been frequently 
used in many studies, such as texture segmentation or 
classification (Chen and Chen 2002; Ojala et al. 2006), moving 
objects detection (Heikkila and Pietikainen 2006) and 
segmentation of remote sensing imagery (Hu et al. 2005; 
Lucieer et al. 2005). 
 
The name “Local Binary Pattern” reflects the functionality of 
the operator, i.e., a local neighborhood is thresholded at the 
gray value of the center pixel into a binary pattern (Ojala et al. 
2002). The original LBP was produced by multiplying the 
thresholded values with weights given to the corresponding 
pixels, and summing up the results (Maenpaa 2003). Ojala et al. 
(Ojala et al. 2002) proposed gray-scale invariance LBP 
form

,P RLBP , which is defined as 
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Where P is the number of neighboring pixels on a circle of 
radius R, corresponds to the gray value of the centre pixel 

of a texture unit and  is the gray value of its neighbourhood. 

In order to achieve rotation invariance, Ojala et al. (Ojala et al. 
2002) presented the term of ‘Uniform’, whose measure 
corresponds to the number of spatial transitions (bitwise 0/1 
changes) in the patterns. However, the ‘uniform’ pattern is 
defined in the case of regular textures i.e. Brodatz’s textures, 
which consist of the vast majority of “uniform” patterns of all 3 
× 3 patterns and it is not the case of satellite imagery through 
our experiment. So we present a rotation invariant LBP form 
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Where the ROR is defined as: 
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2.2 Texture and spectral distribution 

The texture feature is extracted on gray level images in the most 
of the previous studies. For multi-spectral imagery, it does not 
consider cross-band relations (Hu et al. 2005). Although 
Lucieer et al. (Lucieer et al. 2005) considered the cross-band 
relations by multivariate texture model, the method is too 
complicated. In this paper, the texture feature of an image 
region is evaluated by the joint distribution, i.e. a discrete two-
dimensional histogram, of LBP operator operated on two PCs of 
the image region. In the following experiments, we apply 

 to calculate the texture distribution  of an 

image region and compare their efficiency in colour image 
segmentation. The spectral feature of an image region is just the 
joint distribution of grayscale values of its two PCs. As the 
number of bins used in the quantization of the feature space is a 
trade-off between the discriminative power and the stability of 
the feature transform, we set the bins of spectral distribution as 
32 by 32 in the following study. 

8,1
riLBP 1 /LBP LBP2

 
2.3 Similarity measure 

In the split and merge segmentation process, we choose a non-
parametric statistic the G-statistic as a pseudo-metric for 
comparing the similarity between texture and spectral 
distributions. The similarity between a sample and model 
histograms is computed by the formula: 
 
By our experiments, In the split and merge segmentation 
process, we choose a non-parametric statistic the G-statistic as a 
pseudo-metric for comparing the similarity between two 
histograms and the similarity between two regions i and j is 
measured by weighted sum G-statistic  of the 
similarity measures of three features. Then the similarity 
between two regions i and j is measured by weighted sum G-

( , )WG i j
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statistic  of the similarity measures of spectral and 
texture distributions Gs and Gt. 
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The weights of texture and spectral distributions and tw

sw should be adaptively determined in terms of different 
characteristics of pairs of regions. If two regions are smooth, 
the weight of spectral distribution should tend to be large. If 
two regions have obvious texture characteristic, the weight of 
texture should be larger than that of spectra. Standard deviation 
(SD) can evaluate the smoothness of a region to a certain 
extent. Smooth region produces small SD and rough region 
produces large one. So we apply SD of regions to evaluate the 
feature weights between two regions i and j, if the SD values of 
two neighboring regions are less than 40, 
 
 

 max( , )

min( , )
s i j

t i

u SD S

u SD SD

=

= j

D  (6) 

 
Or else,  is set to be the larger one. Where  and  are 
the weight estimation of the texture and spectral distributions; 

 and  are the SD of regions i and j. After 

normalizing the weights, we have the final result: 
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By our experiment, a better way of calculating  in 
the split process is by normalizing the six G-statistics. The 
normalized G-statistics are calculated by: 
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and the weighted sum similarity between two regions 
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3. SEGMENTATION METHODOLOGY 

 
 
Figure 1.  Region-based unsupervised segmentation adaptively 

combining texture and spectral distributions. 
 
The whole segmentation framework in this paper includes 
three steps:  hierarchical splitting, modified agglomerative 
merging and pixel-wise refinement (see Figure 1). Hierarchical 
splitting recursively split the original image into four square 
sub blocks of varying size based on a homogeneity test: 
 
 

  
X

WG
WGR >=

min

max

.  (10) 
    
Where and  represent the largest and smallest 
homogeneities among the six pairwise homogeneities of the 
four sub blocks. The initial divided window size is set to 64 and 
the smallest size is 16. The block recursively split into four sub 
blocks when R is greater than a threshold X. The value of X is 
invariant for different kind of images: X is experimentally set to 
1.3 to 1.5 for regular texture images and 1.2 for H-res satellite 
imagery.  

maxWG minWG

 
Once the image has been split into blocks of roughly uniform 
features, the blocks are merged through a modified merging 
procedure. At a particular stage of merging, we merge that pair 
of adjacent regions which has the smallest merger importance 
(MI) value. MI is defined as: 
 

 WGpMI ×= ,   (11)  
 
where p is the number of pixels in the smaller of the two 
regions and WG is the weighted sum similarity measure 
between the two regions. The reason we adopt equation (12)  
instead of WGpMI ×=  (Ojala and Pietikainen 1999) is 
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that the latter one overrates the size of regions and makes the 
segmentation results unstable. In the merging process, we 
utilize RAG (Region Adjacency Graph) to describe the blocks 
after splitting. The RAG consists of three components: V, E 
and M. V is a set of region nodes to record the region 
information. E is an adjacency matrix to record the pseudo-
address of each region edge. The M matrix records the merger 
importance values of all the pairs of adjacent regions of an 
image. At each merging step, we search the smallest MI of the 
M matrix and merge the pair of adjacent regions that has the 
smallest MI. Then we adjust the RAG, and merge the pair of 
adjacent regions that has the smallest MI in the changed M 
matrix. Merging proceeds until the following stopping criteria 
is true: 
 
 

  
Y

MI
MIMIR cur >=

max .  (12)  
 
 
Where curMI  and maxMI denote the merger importance for the 
current best merge and the largest merger importance of all 
preceding mergers. Threshold Y is determined experimentally. 
 
A boundary refinement algorithm is used to refine the 
boundaries of the blocky segmented image. For an examined 
boundary point P, a discrete square with a dimension d around 
the pixel is placed and the MI between the square and the 
neighboring regions of point P is computed. The pixel is 
relabelled if the label of the neighboring region that has the 
smallest MI is different from the label of P. At the following 
step, we only consider the boundary points that have relabelled 
at the previous sweep. The procedure is iterative and proceeds 
until the un-relabelled number of the boundary pixels is less 
than 50 or the iteration times are larger than 30. 
 
 

4. EXPERIMENTS AND RESULTS  

The objective of the present experiments was to evaluate the 
effectiveness of the novel features of texture and spectral 
distributions and the very simple weight combination approach 
in segmentation of H-res remote sensing imagery. Besides,       
we discuss the effect of several parameters, i.e. weight 
determination, MI and thresholds, on the result of segmentation 
for the purpose of obtaining improved results and finding a way 
of solving SIMF better.  

        

 
The performance of the method was evaluated with 256×256 
pixel multi-spectral IKONOS-2 satellite images. IKONOS-2 
data contain red, green, blue and near-infrared (NIR) channels 
at 4.0 m spatial resolution. Since the colour images are the most 
common in application and can provide more information than 
grayscale images, the paper is endeavour to explore 
segmentation approach that make good use of multi-spectral or 
colour information.  
 
The experiments were performed using the following 
procedure. The original multi-spectral images are transformed 
by PCA. We just take the first two PCs for feature extraction. 
They collect more than 95% information of the original images. 
For texture features, we computed texture labelled images of 
the PCs by rotation invariant LBP form and we got two LBP 
labelled images which were used to obtain the discrete two-

dimensional texture histograms. The texture similarity of two 
regions was calculated by their two-dimensional texture 
histograms. The spectral histogram was gotten by their joint 
distribution of the gray-scale pixel values of the PCs. So we got 
the spectral similarity of two regions from their spectral 
histograms. The first PC was used to calculate the attribute of 
regions by their standard deviation, which was applied to 
weight determination of the two features. The weighted sum 
similarity measures were used to the whole coarse to fine 
segmentation process.  
 

 
 
Figure 2.  Segmentation results of H-res images based on 

texture distributions calculated by 8,1
riLBP  and 

spectral distributions. 
 
Figure 2 shows the segmentation results by SIMF approach 

based on texture distributions calculated by  and 

spectral distributions. The result demonstrates that the SIMF 
approach by our feature extraction method performs well on 
complex H-res satellite images. 

8,1
riLBP

 
 

5. DISCUSSION AND CONCLUSION 

The paper presented a novel feature extraction method that 
considers the cross band relations and a new segmentation 
framework SIMF suitable for segmenting multi-spectral images.  
Figure 2 demonstrates the satisfied segmentation results. It 
shows that  is a robust LBP operator for texture feature 

extraction. Despite that, the feature weight determination is still 
a necessary research topic in the future since the images are 
very complex and different textures may be used to SIMF.  

8,1
riLBP

 
Based on the previous experiments and results, we point out the 
future research works. The feature extraction method is very 
important for SIMF. The future research should concentrate on 
finding more appropriate features adaptive to different kinds of 
images, e.g. that of various resolution. The feature weight 
combination approach determines whether the combining 
features can discriminate heterogeneous regions to a large 
extent, which is still an open problem. The MI determines the 
sequence of merging of pairs of homogeneous regions and the 
stopping criterion for merging. MIR determines when to stop 
the merging process and the scale of segmentation results. So 
the future research should explore MIR that can implement 
multiscale segmentation. Similarity measure of feature 
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distributions is not as important as the previous discussed 
parameters. Several measures can be used, e.g. histogram 
intersection, Log-likelihood statistic or G-statistic and chi-
square statistic.  
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