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ABSTRACT: 
 
Multi-temporal DEM co-registration provides an efficient technique for automatic analyzing the terrestrial changes caused by the 
geological hazards. Because this technique does not require any ground control points (GCPs), it can bring us many benefits:  1) 
avoid the GCP establishment, which is a cost and labor- intensive task; 2) quick response to the natural hazards, especially to the 
landslides and debris-flows; 3)make full use of remote sensing data obtained before the events. It is very difficult to obtain effective 
GCP owing to the terrestrial changes, even impossible; 4) analyze the region could not access. Iterative closest points (ICP) is the 
standard algorithm for surface matching in computer vision and pattern recognition. Its computational efficiency is slower and only 
suit for relative small data set. It adopts an exhaustive search strategy to find the point-to-point or point-to-normal corresponding 
pairs. It is very time-consuming, and consumes about 95% time of the whole matching process. Although many modifications have 
reported to speed up the corresponding pairs searching, it still could not meet the requirement for co-registering the large gridded 
DEM used in geosciences. This paper proposes an efficiency correspondence criterion for gridded DEM matching, called normal 
correspondence criterion (NCC), which finds the corresponding points alone the reference DEM normal vector and is optimized with 
a focus on the gridded date set. The experimental results show that the corresponding points can be determined within no more than 6 
iterations in most cases, which yields high efficiency to DEM co-registration. According to the numerous experimental results based 
on the simulated data sets, DEM co-registration with NCC only use 1/10 time than that used by ICP, and slight larger convergence 
range. 
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 1. INTRODUCTION 

The surface matching is an important task in many applications, 
such as the scene modeling(Vögtle and Steinle 2000; Rabbani, 
Dijkman et al. 2007), change detection(Zhang, Cen et al. 2006) 
and quality inspection(Thoma, Gupta et al. 2005). Among 
methods have been reported, Iterative Closest Point (ICP) (Besl 
and Mckay 1992)algorithm has been recognized as the standard 
method for matching surface in computer vision and pattern 
recognition(Chetverikov, Stepanov et al. 2005). This algorithm 
contains three main steps: 1) search the nearest point-to-point or 
point-to-tangent plane pairs in two surfaces; 2) find the 
transformation by minimizing the mean squared distance 
between the paired point-to-point or point-to-surface pairs; 3) 
apply the derived transformation to second surface and then 
update the mean squared distance. The above three steps are 
iterated to give a most optimal transformation, and also the 
iterations have been proved to be convergence. In this paper, we 
address the problem of surface matching at the point level. The 
main contribution of this paper is proposing an efficient 
correspondence criterion, which reduces the most 
correspondence search. 
 
This work was motivated by the lower efficiency of ICP and its 
variant methods, which usually require heavily computation. 
The point-to-point correspondence criterion proposed by Besl 
and Paul (Besl and Mckay 1992) uses an exhaustive search 
strategy. The computational complexity of the original ICP is of 
order .  and are the size of the first and second 

surface, respectively. 95% run-time is consumed by the 
searching the correspondence points(Chetverikov 1991). 
Moreover, this correspondence criterion impliedly requires each 
point in second surface has one counterpart in first surface. The 
point-to-tangent plane correspondence criterion proposed by 
Chen(Chen and Medioni 1999) also requires the searching 
process, calculating the tangent plane and normal vector for 
every iteration. This correspondence criterion is much more 
complex, and also occupies most computational time. Both of 
them are difficult to work with the larger-size digital surface. In 
others words, their application is very limited. 

( )mnO m n

 
 
 2. CORRESPONDENCE CRITERION FOR GRIDDED 

DEM 

2.1 The proposed correspondence criterion 

The surface normal vector on P′ , an arbitrary point on the first 
surface, will intersect the transformed second surface, the 
intersection point is assumed to be P . The P′  and P  are then 
called corresponding points. This correspondence criterion is 
called normal direction correspondence criterion (NDCC), and 
it can be described as 

 )(, iii PPPs ′Ω⊥′+⋅⋅ tR  (1) 
where t  is the transform, and R  is the 3 by 3 rotation matrix, 

)( iP′Ω  is the neighboring plane centered on .  iP′
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2.2 Efficient finding the corresponding point 

How to find the intersection point P  (Fig 1) according to 
NDCC? It is important issue related to the efficient of the entire 
matching procedure. 

Figure 1  The intersection point 
 

Assume that  is the number of iterations, i ( )ZYXP ′′′′ ,,  is the 
point on the transformed second surface, and where the surface 
normal vector is ( )zyx nnnn ,, . n  can be calculated either by 

convolution cross for regular gridded date sets only or 
associated with a local quadratic surface fit.  
 
The intersection point P can be determined by the following 
steps: 
1) ,0=i XX ′= , ; YY ′=
2) Project P′ to first surface along the Z-axis, an intersection 
point  can be determined; iQ
3) Find the intersection point  between the plane through  

and 
iq iQ

n , its planar coordinate  can be determined by (X , )
iqY
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4) Project  back to the first surface along Z-axis, we will get 

another intersection point ; 
iq

1

5) If 1+iQ  and i  is sufficient close to each other, 1+iQ  is 
considered to the anticipated points 

+iQ
Q

P , otherwise turn to Step 
6); 

6) Let 1+= ii QQ , 1+= ii , turn to Step 3). 
 
Usually the above procedure will give the correct intersect point 
P . However, it does not always work well. Therefore, some 
remedy for this limitation is required.  
 Q0 
From the above procedure, the anticipated intersection point P , 
the series of temporal points  and  are all in the 
intersection curve , where the second surface intersects with 
the plane 

iQ iq
L

( )X ZP ′′′π , which is determined by the normal 

vector n  and the Z-axis through P′ (See Figure 1). Therefore, 
the above procedure can be simplified from 3D s ace to 2D 
space, i.e. to find the intersection point between n

p
 and  in 

the place
L

( )ZPX ′′′π . So, we will analyze and discuss the 
shortcomings of the original question according to the 
simplified version. 
 
As shown in Figure 2, , ,  are three successive 

temporal points, and the slope  of ,  in 
1−iQ iQ 1+iQ

1−i
iF 1−iQ iQ

( )ZPX ′′′π  can be described as: 

 ⎟
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where  is the different between 1 and along Z-axis, 

is the distance between 1−i and i  along 

1−Δ i
iZ −iQ

Q
iQ

d Q X ′ -axis. The 

slope will change with the position of iQ . Whether the 
procedure convergences is determined by the relationship 
between  and . is the slope of the normal vector1−i

iF nF nF n . 
 
When ni (Figure 2-i FF −<− π1 2a), 1+iQ is much closer 

to P than 1− e procedure will converge. When 

ni FF −= π (Figure 2-
iQ , th

F−>

i−1

i−1

2b), 1+iQ  and 1−iQ  are the same 
point, the procedure will neither converge nor diverge. When 

nπ (Figure 2-iF 2c), iQ is much farther to1+ P than 

, the procedure will diverge. 1−iQ
 
During the iteration, when ni FF −≥ iQ will be replaced 

by iQ

i− π1 , 
′ . Then continue the original procedure. With this remedy, 

the ent e procedure will converge to the anticipated intersection i
point 

r
P . 

 

(a)convergent               (b)neither convergent no  divergent               (c)di ergent r v
Figure 2  Finding the intersection point between n  and  in the place L ( )ZPX ′′′π   
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Valley Ridge Slope
 

 

Figure 3   Data Sets 

 
( iiii ZYXQ ′′′′ ,, )  is determined as follows: 
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where  is the planar coordinate,  denotes the Z 

coordinate of the surface at . Actually, 
ii YX , ( ii YXS ′′,

iY
)

S ii YX , ii YY ==′ −1 . 

 is much closer toiQ′ P than i  and (See the blank circle). 

Specially, if the spatial Euclidean distance between and 

1−i  is less than a prearrange threshold,  is considered as to 
be the anticipated intersection point 

Q 1−iQ

iQ′
iQ

Q
P . 

 
 

 3 SURFACE MATCHING WITH NDCC 

The distance between the point tR +′⋅ iPs  on the transformed 

second surface and its corresponding point on the first 
surface along the normal vector n

 iP
 can described as: 

 
 ( )( ) 0·nPsPDist jii tR +′⋅−=  (4) 

 
where 0n  is the unit normal vector of n , · denotes the scalar 

roduct. p
 
Clearly Dist  should be zero in ideal case when the match is 
reached. Then, an object function that minimizes the sum of 
squared  can pull the two surfaces close to each other. Dist
 
  (5) ∑ ⋅ 2min ii Distw
 
where i , the weight of i , 0 or 1, is used to deal with the 
question caused by the partial overlapping(Li, Xu et al. 2001). 
According to the principle of least square, the surface can then 

e matching with an iterative behavior.  

w Dist

b
 
The terminated conditions of the iteration are: 
1)The difference of the estimated transformation parameters 
between two successive iterations is less than per-arranged 
threshold; 
) Or reach the maximum iteration number. 2

 
This algorithm is called least normal distance algorithm (LND). 
Using LND, the two surfaces are pulled close to each other 
long the surface normal vector.  a

 
 

 4 EXPERIMENT ANALYSES 

In order to provide a better understanding of the performance of 
NDCC, we implemented the proposed algorithm, and the 
iterative closet point (ICP) algorithm with the desired rotation 
angle and translation are respectively less than 1.0 ′′  and 0.01m 
between two successive iterations and the maximum iteration 
number is 70 for a comparative study based on simulated data 
set (Figure 3). It is a typical landform surface. It is grided data 
set containing 100×120 with an interval distance equal to 10m. 
The second surface is derived from the first surface by firstly 
applying the per-arranged transformation (rotation angle is 2° 
and translate is 50m) to it, and then adding zero-mean Gauss 
noise with a standard deviation equal to 0.2m. 

 
Both algorithms are directly applied to the data set without any 
pre-processing, feature extraction, and also without knowledge 
about the overlapping. Thus, the experimental results based on 
such data set are objective and they represent typical surface 
conditions. 
 
The performance indices of interest in this paper are 
convergence and computational efficiency. Then all 
experimental results are given below in turn 
 
4.1 Convergence 

To give an in-depth discuss of the convergence of our algorithm, 
the method for computing the convergence rate will be given 
briefly first. The distance E  between two surfaces can be 
measured using the mean of the distance between all 
corresponding points: 
 

 ( )
N

pp
nE ji∑ ′−
=  (6) 

 
where ( )1≥n  is the number of iteration, ⋅  is the Euclidean 

distance, andip jp′  are corresponding points locating on the 

first and second surface, the sub-script ,  are the number of 

point, N is the total number of the corresponding pairs, 

i j
( )0E  is 

the surface distance before matching. Note that the 
corresponding points are not construct by the matching 
algorithm, but the known corresponding points of two surfaces 
to be matched. Therefore, E  is an objective value and is 
independent of the matching algorithm. 
 
During the beginning phase, E  is very big owing to the large 
error existing in the transformation parameters. With the 
increasing of the iterations, E reduces to a small positive 
number, not zero. 
 
The convergence indicator (CI) can then be computed according 
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to the surface distance E , and the mean of all CIs is called the 
average convergence indicator (ACI). Both of them are of 
objective because they are based on the objective variable , 
and are adopted in this paper to discuss the convergence rate in 
detail. 

E

 

 

( ) ( ) ( )
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Using CI and ACI, the convergence rate can be discussed in 
detailed and make comparison of different algorithms. The 
matching algorithm converges when CI less than 1. The less CI 
is, the faster it converges. ACI describes the convergence rate of 
the entire matching process. 
 
ICP need about 2 times iterations more than LND in average 
(Figure 4). Such experimental result illustrated that LND 
converge faster than ICP in general. The variety of the surface 
distance E and convergence indicator (CI) are similar in three 
data sets. The experimental result on the data sets A (Figure 3) 
is given in Figure 5, and the variety of corresponding six 
transformation parameters is given in Figure 6. 
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Figure 4   The iterations required by ICP and our method 
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Figure 5   The surface distance and convergence indicator 
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Figure 6   The six transformation parameters against iterations 
Rx, Ry, Rz (in degree), and Tx, Ty, Tz (in meter) 

 
From the variety of E and CI (Figure 5), LND always converges, 
and the surface distance reduces monotonously. At the 
beginning and ending phase, CI of LND is close to 1. In these 
cases, LND converges slowly. In the middle phase, CI of LND 
is rather small. It illustrate that LND converges very faster. The 
ICP gives another different behavior. Some iterations are not 
convergence, but divergence, although it convergence to correct 
matching at last. The surface distance is not always reduces 
during the iterations. Similar conclusion is also illustrated in 
Figure 6. As to ICP, the variety of six parameters is much more 
complex than that of LND.  
 
The ACI of LND and ICP is respectively 0.31 and 0.66. This 
result illustrate that LND converges faster than ICP. It is 
consistent with the result in Figure 4.  
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Taking all above three aspects into account, the convergence of 
LND is much better than that of ICP. 
 
4.2 Computational Efficiency 

The computational efficiency is measured by the time 
consumed. This experiment is performed on a computer with 
MS windows 2000, Intel II667Mhz, and 300M memory. All the 
three experiments, ICP consumes about 10 times time more 
than LND used. With high computational efficiency, LND can 
be applied to large data sets.  
 
The reason for LND’s so high computational efficiency is 
related on the following two aspects: 1) LND constructs the 
point’s correspondence without exhaustive search process that 
used by ICP. According the statistical result from amount 
simulated experimental results; NDCC adopted by LND can 
determine one corresponding points within 6 iterations (for 
detail, See Section 2.2). 2) Surface moves close to each other 
alone the surface normal vector, which is closest route between 
two surfaces. 
 
 

 5 CONCLUSION 

The correspondence criterion is the most importance step for a 
surface matching algorithm. In this paper, An efficient 
correspondence criterion, called NDCC, for 3D surface 
matching is proposed in this paper. Then a complete surface-
matching algorithm, called LND, using NDCC is also given.  
 
Focusing on the convergence rate and computational efficiency, 
a serials of experiments based on simulated data sets are 
performed to make an in-depth analyses of proposed method. 
Compared with ICP, the efficiency of LND is higher than ICP. 
Moreover, LND converges faster than ICP. 
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