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ABSTRACT: 
 

Residential areas show plenty of texture information on high resolution remotely sensed imagery. Appropriate description about this 
texture information for discriminating residential class and its background is a key problem for improving the classification results. 
Method for selecting proper texture parameters is presented in this paper. Based on the analysis of residential texture, grey level co-
occurrence matrix (GLCM) and edge density (ED) approaches with candidate nine texture measurements (contrast, homogeneity, 
dissimilarity  entropy, energy, mean, standard deviation, correlation and edge density) is selected as candidate texture measurements. 
The texture parameters are selected based on separability measured by Jeffries-Matusita distance (JM distance) between residential 
and its background in corresponding texture space. IKONOS panchromatic imagery has been used as example and the optimal 
texture parameters were selected by using the proposed method. 
 
 

1. INTRODUCTION 

Texture is an important image feature used in visual 
interpretation of residential area from high-resolution remotely 
sensed imagery. It is a property that relates to the nature of the 
variability of pixel values (Anys and He, 1995) which requires 
elaborate prior models that guide procedures for extraction. 
Several studies have addressed that the addition of image 
texture improves image classification. Karathanassi et al. (2000) 
reported that the density of buildings can be discriminated 
based on a simple, binary co-occurrence matrix. Myint and Lam 
(2005) used lacunarity as a texture measure to improve 
traditional spectral based classification accuracy. Gong and 
Howarth (1990) applied edge detection and smoothing 
techniques to generate a spatial pseudo-spectral ‘road-density’ 
band to supplement conventional spectral bands in classification. 
Zhang et al. (2003) applied a similar approach to study urban 
change in Beijing. In this case, line rather than edge detection 
was applied since the former conforms to road patterns better.  
 
Despite the fact that texture can be visually discriminated, there 
is still no appropriate model for texture. It is more difficult to 
quantify texture than spectral information as it involves 
measurements of variability, pattern, shape and size (Coburn 
and Roberts, 2004). There are two distinct types of methods to 
extract texture information from an image, i.e. segmentation-
based and window-based. The segmentation-based methods 
firstly segment an image into non-overlapping homogeneous 
regions (segments), and then texture values are computed from 
these segments. Such methods assume that residential areas are 
homogenous and it can be obtained through segmentation 
algorithms. However, most real residential regions in high-
resolution remotely sensed imagery do not present 
homogeneous features. It is difficult to obtain “pure” residential 
regions through segmentation algorithms. Another problem of 
segmentation-based method is that texture values are usually 
sensitive to the scale, but regions obtained from segmentation 

are commonly with different sizes, so that the texture 
parameters computed from these regions are not comparable. 
The window-based method is the most prevalent technique. 
Texture values is calculated from moving a fixed-size, odd-
numbered window through the image. The selection of window 
size is important for computing texture parameters. Besides, 
since most of texture is computed based on statistics, different 
texture measurements also have different parameters needs to 
be pre-set. 
 
In this paper, the evaluation and optimization of parameters for 
computing textural features to discriminate residential areas 
from their background class based on Jeffries-Matusita distance 
(JM-distance) is presented. Section 2 will introduce the texture 
features and parameter selection method used in this paper. 
Section 3 will give an example of the selection of texture 
parameters by using IKONOS Panchromatic imagery. 
Conclusions will be made in the final section. 

 
 

2. METHODOLOGY 

2.1 Candidate texture measurements for residential areas 

The Haralick grey-level co-occurrence matrix (GLCM) is one of 
the most popular methods for pixel variation statistics (Conners 
and Harlow 1980). It uses a spatial co-occurrence matrix that 
computes the relationships of pixel values in a certain window 
size and uses these values to compute the second-order 
statistical properties from these matrices (Haralick, 1979). Eight 
second-order statistics derived from GLCM are mostly used in 
remote sensing imagery analysis. They are contrast (CON), 
homogeneity (HOMO), dissimilarity (DIS), entropy (ENT), 
energy (also called angular second moment, ASM), mean 
(MEAN), standard deviation (SD) and correlation (COR). 
Details about the GLCM method are available in Haralick et al. 
(1979). Equation 1 shows their definitions. 
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Where i and j are two different grey levels of the image, P is 

the number of the co-appearance of grey levels i and j . 
 

Edge density (ED) is usually computed through the number of 
edge pixels in a given window divided by the window size 
(Equation 2). The detection of edge pixels is the key issue in 
ED computing. There are a variety of algorithms have been 
proposed for edge detection. Among them, Canny edge 
detection operator (Canny, 1986) is one of effective method. It 
formulated edge detection as an optimization problem and 
defines an optimal filter, which can be efficiently approximated 
by the first derivative of Gaussian function in the one-
dimension case. In this study, edge detection by the Canny edge 
detection operator was performed and a binary edge image 
(edge pixel is coded as ‘1’, and non-edge pixel is coded as ‘0’) 
was produced. Then, ED can be computed based on the binary 
edge image. 
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       (2) 

 
 

Where w is the window size. ( , )g x y is the pixel value in the 
given window. 

 
2.2 Parameters effect on texture 

Although absolute values of texture features had little meaning, 
it was worthwhile to understand how each feature varied with 
varying parameters given an image acquisition configuration. 
This should provide users with the knowledge with which to 
make a good selection of parameter values instead of testing all 
possible combinations. The following four parameters need to 
be pre-set for designing the texture features introduced above.  
 
2.2.1 Window size 
The moving window size used to calculate texture is a key 
parameter. In texture analysis, one of the main problems is that 

the textural features whose differences will be used to 
characterize various class types need to be extracted over a 
local area of unknown size and shape. If this information is 
gathered over areas that are not large enough with respect to the 
texture elements or variations, then one cannot expect these 
local analyses to provide feature values that are invariant across 
the textured region. Consequently, it is desirable to extract the 
textural information over as larger an area as possible. If this is 
the case (i.e. texture features are not calculated from a single 
texture class), the features would be representing a hybrid 
values. This problem is similar to mixed-pixel problem and may 
be termed as mixed-texel problem (Shaban and Dikshit, 2001). 
Therefore, the need for a large window size results in a trade-
off between large window sizes that give stable texture 
measures and the increasing proportion of between-class 
variance texture pixels such large windows produce.  
 
2.2.2 Quantization level 
The dimension of a GLCM is determined by the maximum gray 
value of the pixel. The more levels included in the computation, 
the more accurate the extracted textural information,  of course, 
a subsequent increased computation cost (Soh and Tsatsoulis, 
1999). Some of the major quantization schemes are uniform 
quantization, Gaussian quantization and equal probability 
quantization. The uniform quantization scheme is the simplest, 
in which gray levels are quantized into separate bins with 
uniform tolerance limits with no regard to the gray level 
distribution of the image. This technique is not always 
preferable. The Gaussian quantization technique is one such 
scheme. The grey level distribution of the original image is 
assumed to behave normally. Each quantization bin has the 
same area under the curve and thus different space smaller 
spaces in the middle of the distribution and larger spaces at the 
tails of the distribution. In the equal probability quantization 
scheme, each bin has similar probability and it has been shown 
to represent accurate representation of the original image in 
terms of textural based on GLCM (Conners and Harlow 
1978).The Guassian quantization scheme assume a Gaussian 
grey level distribution, which is not always true for high-
resolution imagery. Equal probability quantization normalizes 
different image samples so that a bright feature and a dark 
feature, given the same texture, would have the same co-
occurrence matrix, which is undesirable since grey value is 
important in residential analysis. Thus, in our experiment, we 
have focused on the uniform quantization scheme.  
 
2.2.3 Displacement 
The displacement parameterδ is important in computation of 
GLCM. Applying large displacement value to a fine texture 
would yield a GLCM that does not capture detailed textural 
information, and vice versa (Soh Tsatsoulis, 1999).  
 
2.2.4 Orientation 
Every pixel has eight neighboring pixels allowing eight choices 
for θ , which are 0°, 45°, 90°,135°, 180°,225°, 270°or 315°. 
However, taking into consideration the definition of GLCM, the 
co-occurring pairs obtained by choosing θ equal to 0°would be 
similar to those obtained by choose θ  equal to 180°. This 
concept extends to 45°, 90° and 135° as well. Hence, one has 
four choices to select the value of θ . Sometimes, when the 
image is isotropic, or directional information is not required, 
one can obtain isotropic GLCM by integration over all angles.  
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2.3 Optimal parameters selection based on JM-distance 

The performance of a parameter value of texture features can be 
evaluated through its effectiveness in classification. The 
probability of classification error is used to decide the selection 
of optimal parameters. The smaller the probability of 
classification error is, the better the parameter value. However, 
the classification error method need a lot of computation time 
especially more candidate values for a certain parameter. For 
the statistical separability of classes is inversely proportional to 
the probability of error, people turn to use statistical separabilty 
of class as texture parameter selection criterion. For example, 
the divergence criterion, the transformed divergence criterion, 
the Bhattacharyya distance and the Jeffreys-Matusita (JM) 
distance are most widely used criteria (Swain and Davis, 1978). 
 
The JM-distance is an appropriate technique of measuring the 
average separability between different classes. Iit behaves much 
more like probability of correct classification (Swain et al.1971). 
For two densities ( )1p x and ( )2p x , the JM-distance J is given 

by 
 

      
2

( ) ( )1 2J p x p x dx
x
⎡ ⎤= −∫ ⎣ ⎦                                  (3) 

 
Which can also be written in the form 
 
 

122(1 )BJ e−= −                                                   (4) 
 
 

In which 12B (Bhattacharya distance) is given by 
 

[ ]
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    (5) 

 
Where iμ is the mean vector for class i and i∑ is the 

corresponding class covariance matrix. Since 120 1Be−< < , 
J ranges from 0 to 2 with 2 corresponding to the largest 

separation. 
 
In this paper, to evaluate and optimize of parameters for 
computing textural features to discriminate residential areas 
from their background class, the JM-distance is used. The 
procedure can be achieved through four steps: 
(1) For those textures which have more than one parameter, 
multiple texture images were produced by changing each 
parameter of texture features with fixed all other parameters; 
(2) Selecting appropriate samples of residential class and 
background class from each texture image computed from 
candidate values, separately. A set of JM-distances will be 
obtained according to formula (4) and (5); 
(3) Making a statistics of JM-distances changes; 
(4) The optimum parameter value is then determined by those 
with the largest JM-distance values. 

 

   max( )J Joptimal i=                            (6) 

Where i is the number of candidate values. 
 

3. RESULTS AND DISCUSSION 

An IKONOS panchromatic imagery that has a spatial resolution 
of 1 meter was used for the experiment. The image covers the 
test area of Wangjing District that locates in the north-east 
fringe of Beijing city of China with a mixture of thee types of 
residential areas and complex background cover types including 
grassland, woodland, river, pond, main road, bare ground and 
bare farmland (Figure 1). Representative training sites for the 
residential class (including three types of residential areas) and 
background ((including water bodies, grass land, wood land, 
road, bare farmland, barren ground, etc.) were selected through 
accurate analysis with the reference to multi-spectral images 
covering the same area by using a polygon-based approach.  
 
 

 
 

Figure 1. The test image (IKONOS panchromatic band at 1 
meter resolution 2719×2449 pixels) 

 
3.1 Optimal parameter value of window size 

In this paper, different window sizes (5×5 to 29×29) were tested 
for deriving every texture feature. The 29×29 was selected as 
the upper limit of window size because the obvious ‘window 
problem’ was observed for those with greater window sizes. 
The JM-distance between residential class and its background 
classes was calculated on each texture measurement with 
different window sizes. Figure 2 shows the statistical results, on 
which it is clear that except MEAN (17×17), SD (9×9) and ED, 
the optimal window size for all texture bands is 25×25 pixels, 
supported by the largest JM-distance between residential class 
and background. For MEAN and SD, although the JM-distances 
were peaked with different window size, the actual differences 
to those with the 25×25 window were quite minimal. This also 
applied to ED, which is peaked with the 29×29 window with 
only minimal difference from the 25×25 window. Therefore, 
the 25×25 window size is selected as the optimal window size 
for deriving texture features for the residential class. 
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Figure 2. JM-distance between residential and background 

classes on different textural features with respect to window 
size 

 
3.2 Optimal parameter value of quantization 

Four different quantization schemes 16, 32, 64 and 256 grey 
levels were tested for GLCM texture features. Figure 3 shows 
JM-distance variation with respect to the pixel grey levels. The 
result shows that the quantization level dose not have 
significant impact on CON, DIS and SD bands, and appears to 
have negative impact on the other texture features including 
ENT, HOMO, ASM and COR. To balance the accuracy and 
demand on computation resources, we chose a quantization 
level of 32.  
 
 

 
Figure 3. JM-distance between residential and background 

classes on different textural feature with respect to quantization 
level 

 
3.3 Optimal parameter value of displacements 

In this study, displacements of 1,3,5 and 7 pixels were tested as 
shown in Figure 4. In general there is a tendency that JM-
distance decreases with the increasing displacement. Since it 
appears that low displacement yield generally better results 
(greater JM-distances) for most texture bands, we therefore 
selected one as displacement in texture computation.  
 
 

 
Figure 4. JM-distance values between residential class and 
background class on different textural feature image with 

respect to displacement 
 

3.4 Optimal parameter value of orientation 

To assess the impact of various orientation on the derived 
texture measures, we examined their separability with the 
variations on orientation of 0°, 45°, 90°, 135° and the average 
of four orientations. Figure 5 shows that, except for SD, JM-
distances on average orientation are significantly greater than 
on the others.  
 

 
 

Figure 5. JM-distance values between residential and 
background classes on different textural features with respect to 

orientation 
 

Table 1 summarizes the optimal parameters selected for 
deriving texture measures in this study.  
 
As the parameters of each texture feature have been selected, 
nine texture images can be obtained from the original IKONOS 
Panchromatic image. The nine texture features can be separated 
into five categories according to their properties, namely, the 
‘contrast’ group (CON, DIS and HOMO), the ‘orderliness’ 
group (ASM and ENT) , the ‘edge’ group (ED) , the ‘mean’ 
group (MEAN) and the ‘descriptive statistics’ group (SD and 
COR). To understand the distribution of different kinds of land 
cover types on each texture space image better, we plot the 
clusters based on the training samples. Figure 6 to figure 9 
shows the cluster result.  
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Figure 6 shows ED and MEAN statistics of nine land cover 
types. Generally speaking, bare ground shows the highest 
MEAN value, while water bodies show the lowest. In between 
there are numerous ‘confusing’ classes including three types of 
residential area, farmland, grassland and woodland. It is 
obvious that the MEAN alone does not provide enough variance 
to distinguish residential areas from their background. Old 
urban and rural residential areas show greater ED values as 
their buildings are assembled densely. Roads and cars on the 
road have clear edges resulting in a high ED value. New urban 
residential areas have sparse buildings, thus their ED values are 
smaller than the other two types of residential areas. Trees in 
woodland often show clear crown and shadows on high-
resolution images, thus is more likely to detect edge point with 
this cover type. Other background classes such as water, 
grassland, bare farmland and bare ground have an ED value 
close to zero. Thus, it is clear that ED is a good candidate for 
the detection of residential areas with the background except 
road and wood land.  

 
Figure 7 presents the contrast group to distinguish residential 
areas and background. New urban residential area, road, rural 
residential area, old urban residential area and wood land show 
more contrast than water, grassland, bare farmland and bare 
ground.  

 
Figure 8 shows orderliness group in describing pixel variation. 
All three kinds of residential areas have less order or uniform 
surface: woodland and road show medium uniform surface, 
while water, grassland, bare farmland and bare ground represent 
a uniform surface. 
 
 Figure 9 uses SD and COR to describe differences of 
residential areas and their background. It can be seen that new 
built urban residential area, old urban residential area, rural 
residential area, road and woodland all show greater SD values, 
which means that the pixel DN values are more diversified. In 
contrast, bare ground, grassland, water and barren farmland all 
show smaller SD values. All three types of residential areas are 
characterized with smaller COR values than the background 
classes, suggesting more discrete and less dependent spectral 
distribution. 
 
 

4. CONCLUSIONS 

In this paper, we investigated methods for selecting and 
evaluating texture parameters (window size, quantization level, 
displacement and orientation) for the identification of 
residential areas based on JM-distance. grey level co-
occurrence matrix (GLCM) and edge density (ED) approaches 
with candidate nine texture measurements (contrast, 
homogeneity, dissimilarity  entropy, energy, mean, standard 
deviation, correlation and edge density) is selected as candidate 
texture measurements. The texture parameters are selected 
based on Jeffries-Matusita distance (JM distance) between 
residential and its background in corresponding texture space. 
IKONOS panchromatic imagery has been used as example and 
the optimal texture parameters were selected by using the 
proposed method. Further studies will be focused on the 
selection of optimal texture combination to improve the 
residential classification results. 
 

ACKNOWLEDGEMENT 

This project is financed by two items of the National Natural 
Science Foundation of China (Contract No. 40337055 and 
Contract No. 40501062). 
 
 

REFERENCES 

Anys, H. and He D.C., 1995. Evaluation of textural and 
multipolarization radar features for crop classification, IEEE 
Transactions of Geoscience and Remote Sensing, 33(5): 1170-
1181. 
 
Coburn, C.A., Roberts, A.C.B., 2004. A multiscale texture 
analysis procedure for improved forest stand classification, 
International Journal of Remote Sensing, 20 October, 25(20), 
4287-4308. 
 
Conners, R.W and Harlow, C.A.,1978. Equal probability 
quantizing and texture analysis of radiographic images, 
Computer Graphics Image Processing, 8, 447-463. 
 
Canny J.F. 1986. A computational approach to edge detection. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 8(6)：679-698. 
 
Gong, P., 1991. A comparison of spatial feature extraction 
algorithms for land-use classification with SPOT HRV Data, 
Remote Sensing of Environment, 40, 137-151. 
 
Haralick, R.M. 1979. Statistical and structural approaches to 
texture, Proceedings of the IEEE, 67, 786-804. 
 
Karathanassi, V., Iossifidis, CH., and Rokos, D., 2000. A 
texture-based classification method for classifying built areas 
according to their density, International Journal of Remote 
Sensing, 21(9), 1807-1823. 
 
Myint, S.W. and Lam, N., 2005. A study of lacunarity-based 
texture analysis approaches to improve urban image 
classification, Computer, Environment and Urban Systems, 29, 
501-523. 
 
Shaban, M.,A., and Dikshit, O., 2001. Improvement of 
classification in urban areas by the use of textural features: the 
case study of Lucknow city, Uttar Pradesh, International 
Journal of Remote Sensing, 22(4), 565-593. 
 
Soh, L.K. and Tsatsoulis, C., 1999. Texture analysis of SAR sea 
ice imagery using grey level co-occurrence matrices, IEEE 
Transactions on Geoscience and Remote Sensing, 37(2), 780-
795. 
 
Swain, P.H. and Davis S.M.,1978. Remote Sensing: The 
quantitative approach, New York: McGraw-Hill,  
 
Zhang, Q., Wang, J., Gong, P., and Shi., P, 2003. Study of 
urban spatial patterns from SPOT panchromatic imagery using 
textural analysis, International Journal of Remote Sensing, 
24(21), 4137-4160. 

 

1375



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. Beijing 2008 

 
Table 1. Optimal parameters for each texture features 

 
 

Figure 6. Cluster of land cover types in the space defined by 
MEAN and ED 

Figure 7. Cluster of land cover types in the contrast space 

Figure 8. Cluster of land cover types in the orderliness space Figure 9. Cluster of land cover types in the space defined by 
SD and COR 

 
 

 

 

 MEAN SD HOMO CON DIS ENT ASM COR ED 
Window size 17×17 9×9 25×25 25×25 25×25 25×25 25×25 25×25 25×25 
Grey levels - Constant 16 64 64 16 16 256 - 
Displacement - 1 3 1 1 1 1 7 - 
Orientation - 135° Average Average Average Average Average Average - 
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