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ABSTRACT: 
 
The automatic detection and 3D modeling of objects at airports is an important issue for the EU FP6 project PEGASE.  PEGASE is 
a feasibility study of a new 24/7 navigation system, which could either replace or complement existing systems and would allow a 
three-dimensional truly autonomous aircraft landing and take-off primarily for airplanes and secondary for helicopters. In this work, 
we focus on the extraction of man-made structures, especially buildings, by combining information from aerial images and Lidar 
data. We applied four different methods on a dataset located at Zurich Airport, Switzerland. The first method is based on DSM/DTM 
comparison in combination with NDVI analysis; the second one is a supervised multispectral classification refined with height 
information from Lidar data. The third approach uses voids in Lidar DTM and NDVI classification, while the last method is based 
on the analysis of the vertical density of the raw Lidar DSM data. The accuracy of the building extraction process was evaluated by 
comparing the results with reference data and computing the percentage of data correctly extracted and the percentage of missing 
reference data. The results are reported and commented. 
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1. INTRODUCTION 

Pegase is a EU FP6 project aiming at studying the feasibility of 
a new 24/7 navigation system, which could either replace or 
complement existing systems and would allow a three-
dimensional truly autonomous aircraft landing and take-off 
primarily for airplanes and secondary for helicopters (Pegase 
Web, 2008). Within the project, the acquisition of a reliable 
geospatial reference database of the airports, and in particular 
the automatic extraction of buildings and obstacles at airports, 
has a critical role for aviation safety. Often, 3D information of 
airports is not available, is not accurate enough, not complete, 
or not updated. Thus, methods are needed for generation of 
accurate and complete 3D geodata with high degree of 
automation. Buildings and trees are considered as obstacles, so 
they should be correctly detected. There are several methods 
applied for this purpose, based on image and/or airborne Lidar 
data. In our approach, objects are detected and extracted in 
aerial images and Lidar data through a combination of 
multispectral image classification, DSMs and DTMs 
comparisons and density analysis of the raw Lidar point cloud. 
This paper will give a brief overview of the related work on this 
subject. Then, after the description of the test area at Zurich 
Airport, Switzerland, the strategy and algorithms will be 
presented and the results will be reported, compared and 
commented.  
 

2. LITERATURE REVIEW 

Aerial images and Lidar data are common sources for object 
extraction. Regarding image-based analysis, multispectral 
classification uses spectral properties of objects and tries to 
extract them by using supervised or unsupervised methods. 
Currently, there are commercial systems (e.g. ENVI, ERDAS, 
e-Cognition, IDRISI, etc.), which use expert classification 
algorithms such as rule-based, object-oriented and fuzzy 

approaches. In digital photogrammetry, features of objects are 
extracted using 3D information from image matching or 
DSM/DTM data, spectral, textural and other information 
sources. Henricsson and Baltsavias (1997) combine image 
matching and spectral properties for the extraction process. 
Rottensteiner (2001) uses a semi-automated approach based on 
feature-based matching techniques. In Weidner and Foerstner 
(1995), above-ground objects are estimated using a normalised 
DSM (nDSM) by subtracting a DTM, estimated by a 
morphological filtering of the DSM, from the original DSM. In 
general, the major difficulty using aerial images is the 
complexity and variability of objects and their form, especially 
in suburban and densely populated urban regions.  
 
Regarding Lidar, building and tree extraction is basically a 
filtering problem in the DSM (raw or interpolated) data. Some 
algorithms use raw data (Sohn and Dowman, 2002; Roggero, 
2001; Axelsson, 2001; Vosselman and Maas, 2001; Sithole, 
2001; Pfeifer et al., 1998), while some others use interpolated 
data (Elmqvist et al., 2001; Brovelli et al., 2002; Wack and 
Wimmer, 2002). The use of raw or interpolated data can 
influence the performance of the filtering, but also its speed 
being slower for raw data. The algorithms differ also in the 
number of points they use at a time. In addition, every filter 
makes an assumption about the structure of bare-earth points in 
a local neighbourhood. This assumption forms the concept of 
the filter. Often, segmentation is performed to find the clusters 
which delineate objects and not facets of objects. The mostly 
used segmentation methods are based on region-based methods, 
like in Brovelli et al. (2002), Crosilla et al. (2005), or use 
Hough transform (Tarsha-Kurdi et al., 2007). In Elmqvist et al. 
(2001), the terrain surface is estimated by using active contours. 
The performance of the algorithm is good for large objects and 
all types of vegetation but small objects can not be always 
extracted (Sithole and Vosselman, 2003).  Sohn and Dowman 
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(2002) separate ground and above-ground objects by a method 
that recursively fragments the entire LIDAR data into a set of 
piecewise planar surface models in order to make underlying 
terrain slope variations regularized into homogeneous plane 
terrain. Its performance is good for large buildings and all types 
of vegetation but poor for buildings located on slopes and low 
vegetation  (Sithole and Vosselman, 2003). Roggero (2002) 
first separates ground from above-ground objects, and then 
from the latter dataset, buildings and trees are extracted. The 
method has been tested at various test sites but it is very 
sensitive to the input parameter values. Brovelli et al. (2002) 
applies edge detection before region growing, and then the 
terrain model is computed. Buildings and trees are extracted 
after a region growing process. Wack and Wimmer (2002) 
interpolate the original data to a regular grid and use a 
hierarchical approach in combination with a weighting function 
for the detection of raster elements that contain no ground data. 
The weighting function considers the terrain shape, as well as 
the distribution of the data points within a raster element. 
 
Many researchers use 2D maps as prior information for building 
extraction in Lidar data. In Haala and Brenner (1997), 
geometric primitives were estimated based on histogram 
analysis. In general, in order to overcome the limitations of 
image-based and Lidar-based techniques, it is of advantage to 
use a combination of these techniques (Ackermann, 1999). 
Building reconstruction fusing Lidar data and aerial images was 
presented in Rottensteiner and Briese (2003). Firstly, they 
detected building regions in raw data, then, roofs were detected 
using a curvature-based segmentation technique. Additional 
planar faces were estimated with aerial images. Sohn and 
Dowman (2007) used IKONOS images to find building regions 
before extracting them from Lidar data. Straub (2004) combines 
information from infrared imagery and Lidar data to extract 
trees. 
 
Few commercial software allow automatic object extraction 
from Lidar data. In TerraSCAN, a TIN is generated and 
progressively densified, using as parameters the angle points to 
make the TIN facets and distance to nearby facet nodes 
(Axelsson, 2001). In SCOP++, robust methods operate on the 
original data points and allow the simultaneous elimination of 
off-terrain points and terrain surface modelling (Kraus and 
Pfeifer, 1998).  
 
In summary, most approaches try to find objects using single 
methods.  In our strategy, we use different methods using all 
data with the main aim to improve the results of one method by 
exploiting the results from the remaining ones.   
 
 

3. INPUT DATA AND PREPROCESSING 

The methods presented in this paper have been tested on a 
dataset located in the Zurich airport. The area has an extension 
of 1.6km x 1.2km (Figure 1). The available data for this region 
are: 
3D vector data of airport objects (buildings) 
Colour and CIR (Colour InfraRed) images 
Lidar DSM/DTM data (raw and grid interpolated) 
 
3.1 Vector data 

The 3D vector data describe buildings with 20 cm vertical 
accuracy. It has been produced from stereo aerial images 

(Section 3.2) using a semi-automatic approach using the CC-
Modeler software (Gruen and Wang, 1998, 2001). 
 

 
 

Figure 1. Aerial image of Zurich Airport. 
 
3.2 Image data 

RGB and CIR images were acquired with the characteristics 
given in Table 1.  
 
 RGB CIR 
Camera Type Analogue 
Focal Length 303 mm 
Scale 1:10150 1: 6000 
Forward overlap 70% 70% 
Side overlap 26% 26% 
Scan resolution 20 micron 
GSD (calculated) 12.50cm 7.25cm 
Date of acquisition July 2002 July 2002 
 

Table 1. Main characteristics of RGB and CIR flights. 
 
The images have been first radiometrically preprocessed (noise 
reduction and contrast enhancement), then the DSM was 
generated with the software package SAT-PP, developed at the 
Institute of Geodesy and Photogrammetry, ETH Zurich (Gruen 
and Zhang, 2003; Zhang, 2005). The matching uses multiple 
matching primitives and multi-image matching methods and 
automatic quality control. A detailed description of the 
matching method is given in Zhang (2005). For the selection of 
the optimum band for matching, we considered the image 
ground resolution, and the quality of each channel based on 
visual checking and histogram statistics. Finally, the NIR band 
was selected for DSM generation. The final DSM was 
generated with 50cm grid spacing. 
  
Figure 2 shows a part of the generated DSM.  
 

 
 

Figure 2.  Matching DSM at Zurich Airport. 
 
Using this DSM, CIR orthoimages were produced with 12.5cm 
ground sampling distance. 
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3.3 Lidar data 

Lidar raw data (DTM-AV and DSM-AV) have been acquired 
with “leaves off” in February 2002 by Swisstopo. The DSM-
AV point cloud includes all Lidar points (including points on 
terrain, tree branches etc.) and has an average point density of  
1 point per 2 m2 (Figure 3). The DTM-AV data includes only 
points on the ground, so it has holes at building positions and 
less density at tree positions (Figure 4). The height accuracy 
(one standard deviation) is 0.5 m generally, and 1.5 m at trees 
and buildings. The 2m spacing grid DSM and DTM were 
generated by Swisstopo with the Terrascan commercial 
software from the original raw data. 
 

 
 
Figure 3. Density histogram (points per 2m2) of DTM raw data 
(left) and DSM raw data (right) of Zurich airport. DTM and 
DSM have a point density of 1 and 1.5-2 points per 2m2 

respectively. 
 

 
 

Figure 4. DTM-AV raw data of Zurich airport. The white areas 
represent voids (buildings, aircrafts, vehicles, high or dense 

trees). 
 

4. BUILDING EXTRACTION 

Four different approaches have been applied to exploit the 
information contained in the image and Lidar data, extract 
different classes of objects and finally buildings. The first 
method is based on DSM/DTM comparison in combination 
with NDVI analysis for building extraction. The second 
approach is a supervised multispectral classification refined 
with height information from Lidar data. The third method uses 
voids in Lidar DTM and NDVI classification. The last method 
is based on the analysis of the vertical density of the raw DSM 
Lidar data. The accuracy of the building extraction process was 
evaluated by comparing the results with the reference data and 
computing the percentage of data correctly extracted and the 
percentage of reference data not extracted. 
 

4.1 DSM/DTM and NDVI 

By subtracting the DTM from the DSM, a so-called normalized 
DSM (nDSM) is generated, which describes the above-ground 
objects, including buildings and trees (Zhang, 2003). As DSM, 
the surface model generated by SAT-PP and as DTM the Lidar 
DTM grid were used. Some details of the nDSM are shown in  
Figure 5. As it can be seen, the nDSM is quite good including 
also small trees, bushes and vehicles . 
 

.  
 

Figure 5. nDSM overlaid on orthoimage. 
 
A standard unsupervised (ISODATA) classification of the CIR 
orthoimage was used to compute an NDVI image, containing 
vegetation (mainly trees and grass). The intersection of the 
nDSM with NDVI corresponds to trees. By subtracting the 
resulting trees from the nDSM, the buildings are obtained. 76% 
of building class pixels were correctly classified, while 10% of 
the reference data were not detected. The main reason for the 
76% is green material on buildings, espec. roofs. The extracted 
buildings are shown in Figure 6. In the final result, some non-
building objects are remaining such as aircrafts and vehicles.  
 

 
 
Figure 6. Building class (in red) extracted from intersection of 
nDSM and NDVI. 
 
4.2 Supervised classification 

The basic idea of this method is to combine the results from a 
supervised classification with the height information contained 
in the nDSM. Supervised classification methods are preferable 
to unsupervised ones, because the target of the project is to 
detect well-defined standard target classes (airport buildings, 
airport corridors, bare ground, grass, trees, roads, residential 
houses, shadows), present at airport sites. The training areas 
were selected manually using AOI tools within the ERDAS 
Imagine commercial software (Kloer, 1994).  
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Among the available image bands for classification (R, G and B 
from colour images and NIR, R and G bands from CIR images), 
only the bands from CIR images were used due to their better 
resolution and the presence of NIR channel (indispensable for 
grass and trees extraction). In addition, new synthetic bands 
were generated from the selected channels: a) 3 images from 
principal component analysis (PC1, PC2, PC3); b) two images 
from NDVI computation using the NIR-R and R-G channels 
(NDVI1 and NDVI2 respectively) and c) one saturation image 
(called S) obtained by converting the  NIR-R-G channels in the 
IHS (Intensity, Hue, Saturation) colour space. 
 
The separability of the target classes was analyzed through use 
of plots of mean and standard deviation for each class and 
channel and divergence matrix analysis of all possible 
combinations of the three CIR channels and the additional 
channels, mentioned above. The analysis showed that: 
 
• G and PC2 have high correlation with other bands 
• NIR-R-PC1 is the best combination based on the plot 

analysis 
• NIR band shows good separability based on the divergence 

analysis 
• PC1-NDVI-S combination shows best separability over 

three-band combinations based on the divergence analysis 
 
Therefore, the combination NIR-R-PC1-NDVI-S was selected 
for classification. The maximum likelihood classification 
method was used. As expected from their low values in the 
divergence matrix, grass and trees, airport buildings and 
residential houses, airport corridors and bare ground, airport 
buildings and bare ground could not be separated. Using the 
height information from nDSM, airport ground and bare ground 
were fused into “ground” and airport buildings with residential 
houses into “buildings”, while trees and grass, as well as 
buildings and ground could be separated. The final 
classification is shown in  
Figure 7. 86% of building class is correctly classified, while 
13% of the reference building data were not detected. Aircrafts 
and vehicles are again mixed with buildings. 
 

 
 Figure 7. Results from supervised classification combined with 
height information. 

 
4.3 Building extraction using density of DTM-AV and 
NDVI 

Buildings and other objects, like high or dense trees, vehicles, 
aircrafts, etc. are characterized by null or very low density in 
the DTM-AV point cloud. Using the vegetation class from 
NDVI channel as a mask, the areas covered by trees are 

eliminated, while small objects (aircrafts, vehicles) are 
eliminated by deleting them, if their area was smaller than 25m2.  
Figure 8 shows the final building class. 87% of building class 
pixels are correctly classified, while 13% of the reference data 
are not detected. 
 

 
 
Figure 8. Lidar DSM points located on buildings, extracted 
using DTM-AV voids and NDVI. 
 
4.4 Building and tree extraction from Lidar data 

As mentioned above, in DSM raw data the point density is 
generally much higher at trees than at open terrain or buildings. 
On the other hand, tree areas have low density in DTM-AV data, 
as it can be seen in Figure 4. We start from regions that are 
voids or have low density in the raw DTM. These regions 
represent mainly buildings and trees and are used as mask to 
select the raw DSM points for further analysis. 
 
The first step is identification of buildings by fitting planes, and 
the elimination of these points. The reason is that building roofs 
may cause problems in the subsequent step of vertical point 
density and distribution analysis, aimed at identification of trees. 
The plane fit operation is possible with different commercial 
software. Here, Geomagic Studio by (Geomagic Studio, 
Raindrop Geomagic, Research Triangle Park, NC) was used. 
The planes of small buildings and non-planar parts of large 
buildings could not be detected.  With the remaining points, the 
analysis regarding vertical point density and distribution is 
applied in search windows with size 2.5 m x 2.5 m. This size 
was selected larger than the average point density of the DSM. 
From Figure 3, we see that the average density is 1.5-2 points 
for a window of 1.4 m x 1.4 m. 
 
The points in each search window are projected onto the xz 
plane and divided in four equal subregions, using xmin, xmax, zmin 
and zmax as boundary values, with xmax = xmin + 2.5m. The 
density in the four subregions is computed (see example in 
Figure 9). 
 

 
Figure 9. Projected points in xz plane and 4 subregions.  
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Point clouds in each window are automatically classified as 
trees, for certain combinations of point density in the four 
subregions. These combinations generally request that at least 
one upper subregion has high density, while at least one lower 
subregion should have lower density. In addition, we request 
that the difference Zmax – Zmin in each window exceeds a 
threshold. For the upper subregions a threshold T for the point 
density is used, where T is defined as: 

2
UP

UPT σμ +=  (1)

UP and 　UP are the mean value and standard deviation of the 
number of points in each of the upper subregions in all the 
windows.  

 

  
Figure 10. Extracted trees (black points) overlaid on CIR 
orthoimage. 
 
In the case of Zurich Airport data, the density threshold T is 6 
points / 2.5m by 2.5m. The extracted tree class has been 
compared with the tree class extracted from NDVI and nDSM. 
73% of tree points  were correctly classified, while 8% were not 
detected. The density of point cloud directly affects the quality 
of the result. As it can be seen in Figure 10, visible errors in the 
results are small objects as vehicles and aircrafts. In addition, 
some tree areas could not be extracted because of the low point 
density in the whole dataset.  As mentioned above, the points in 
the raw DSM not present in DTM-AV describe buildings, 
vehicles and high or dense vegetation. After extracting the trees 
using point density analysis, buildings are obtained by 
subtraction of the tree layer from the DSM points, 
corresponding to voids and low density, and filtering of small 
objects (Figure 11). The accuracy analysis shows that 92% of 
building pixels are correctly classified, while 17% of buildings 
could not be detected. 

 
 
Figure 11. Extracted building points after elimination of tree 
points. 
 

5. ANALYSIS OF RESULTS 

The accuracy results of the four methods described in Section 4 
are summarized in Table 2. Method 4, based only on Lidar data, 
performs best in terms of correctness, but is the worst in terms 
of completeness. It does not detect all buildings, but those 
detected are correct. On the other hand, Method 1, again based 
on Lidar data, but with NDVI contribution, can extract the 
largest part of buildings but other objects are included, resulting 
in the worst correctness value. The other two methods have 
basically the same performance, lying in the middle between 
Method 1 and 4 results. It should be noted that results using 
Lidar data strongly depend on average point density, but also 
number of echoes that are registered per pulse and whether 
Lidar data acquisition was with leaves on or off.  
 
Due to time restrictions, only a first simple fusion of the results 
has been attempted. By union of the four building detection 
results, the omission rate decreases (8%) but also correctness 
too (81%), while the intersection of all results gives the best 
correctness (96%). The correctness of each method could be 
improved by developing an automatic detection of objects like 
aircrafts, which are classified as buildings in all methods. 
Taking into account the advantages and limitations of each 
method, currently we can not recommend a single solution for 
building extraction. By intersecting the results from method 4, 
based on Lidar data analysis, and method 2, based on 
supervised classification, the best correctness rate is achieved, 
but the completeness is poor. The other building layer 
combinations in Table 2 led to worse results.  
 

 Method 1 Method 2 Method 3 Method 4 1∪2∪3∪4 1∩2∩3∩4 1∪4 1∩4 2∪4 2∩4
 nDSM+NDVI Class.+nDSM Voids+

NDVI 
Lidar       

Correctness (%) 76 86 87 92 81 96 83 96 83 95
Omission error (%) 10 13 13 17 8 29 10 29 9 27

Table 2. Results of building extraction using four methods and combinations thereof. The best results are shown in bold. 
 

6. CONCLUSIONS 

In this paper, different methods for object extraction (mainly 
buildings) in Lidar data and aerial images have been presented. 
In each method, the basic idea was to get first preliminary 
results and improve them later using the other available data. 
The methods have been tested on a dataset located at Zurich 
Airport, Switzerland, containing aerial colour and infrared 
images, Lidar DTM and DSM point clouds and regular grids 
and vector data for accuracy assessment. The results showed 

that correctness values up to 92% can be achieved using Lidar 
data only, while the highest completeness is obtained by the 
combination of image and Lidar data. 
 
Future work will include the improvement of building 
extraction from aerial images and Lidar data. The algorithms 
will be tested also on other airport locations.  However, the 
main focus will be on a better fusion of the individual results, 
use of image edges for better building delineation and more 
detailed building modelling. 
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