
AUTOMATIC GENERATION OF DIGITAL BUILDING MODELS FOR COMPLEX 
STRUCTURES FROM LIDAR DATA 

 
 

Changjae Kim a, Ayman Habib a, *, Yu-Chuan Chang a 

 
aGeomatics Engineering, University of Calgary, Canada - habib@geomatics.ucalgary.ca, (cjkim, ycchang)@ucalgary.ca 

 
Commission IV, WG IV/3 

 
 

KEY WORDS: LiDAR, Ground/non-ground Separation, Building Hypotheses, Segmentation, Digital Building Model 
 
 
ABSTRACT: 
 
Automated and reliable 3D reconstruction of man-made structures is important for various applications in virtual reality, city 
modeling, military training, etc.  This paper is concerned with the automated generation of Digital Building Models (DBM) 
associated with complex structures comprised of small parts with different slopes, sizes, and shapes, from a LiDAR point cloud. The 
proposed methodology consists of a sequence of four steps: ground/non-ground point separation; building hypothesis generation; 
segmentation of planar patches and intermediate boundary generation; and boundary refinement and 3D wire frame generation. First, 
a novel ground/non-ground point classification technique is proposed based on the visibility analysis among ground and non-ground 
points in a synthesized perspective view. Once the LiDAR point cloud has been classified into ground and non-ground points, the 
non-ground points are analyzed and used to generate hypotheses of building instances based on the point attributes and the spatial 
relationships among the points. The third step of the proposed methodology segments each building hypothesis into a group of planar 
patches while simultaneously considering the attribute similarity and the spatial proximity among the points. The intermediate 
boundaries for segmented clusters are produced by using a modified convex hull algorithm. These boundaries are used as initial 
approximations of the planar surfaces comprising the building model of a given hypothesis. The last step of the proposed 
methodology utilizes these initial boundaries to come up with a refined set of boundaries, which are connected to produce a wire 
frame representing the DBM. The performance of the proposed methodology has been evaluated using experimental results from real 
data.  
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Recent developments in positioning and navigation technology 
is having a positive impact on the widespread adoption of 
LiDAR (Light Detection And Ranging) systems, leading to an 
abundant availability of accurate surfaces with high point 
density. Abstracting the huge number of points in a typical 
LiDAR survey and relating them to physical objects, especially 
man-made structures, are among the key problems being 
addressed by current research. Therefore, there has been 
significant interest in developing DBM generation 
methodologies for representing artificial structures in a simple 
way, instead of using the enormous amount of points present in 
the LiDAR point cloud. Various methods have been suggested 
for building extraction from LiDAR points. Haala et al. (1998), 
Brenner and Haala (1998), Vosselman and Dijkman (2001) 
made use of ground plan data. Several attempts based on using 
Digital Surface Models (DSM) and Digital Terrain Models 
(DTM) have been made by Brunn and Weidner (1997), Ameri 
(2000), and Rottensteiner and Briese (2002). This paper 
discusses the topic of automated generation of DBM associated 
with complex mad-made structures from a raw LiDAR point 
cloud. More specifically, we will present a new framework for 
DBM generation from LiDAR data, which overcomes 
shortcomings of existing techniques. The proposed 
methodology consists of four basic steps: 1) Ground/non-
ground point separation; 2) Building hypothesis generation; 3) 
Segmentation of planar patches and intermediate boundary 
generation; and 4) Boundary refinement and 3D wire frame 
generation. First, a novel ground/non-ground point 

classification technique is proposed based on the visibility 
analysis among ground and non-ground points in a synthesized 
perspective view. After the original LiDAR points have been 
classified into ground and non-ground points, further 
investigation into the non-ground points is performed, to 
generate hypotheses of building instances. The generated 
hypotheses are based on the planarity and the proximity of the 
non-ground points. The points representing a single hypothesis 
might be comprised of several connected planes with different 
slopes and aspects. Therefore, the third step of the proposed 
methodology segments each building hypothesis into a group of 
planar patches. The proposed segmentation technique in this 
paper uses a voting scheme that keeps track of the point 
attributes. The clustering of the points is implemented based on 
simultaneous consideration of the attribute similarity and spatial 
neighborhood among the points, to provide a robust and 
accurate solution. Moreover, this procedure is more efficient 
compared to the existing methods in terms of computation load. 
Once the clusters are provided from the segmentation procedure, 
the boundary for each of the segmented clusters is derived using 
a modified convex hull algorithm. These boundaries will be 
used as initial approximations of the planar surfaces comprising 
the building model of a given hypothesis. The last step of the 
proposed methodology utilizes these initial boundaries to come 
up with a delineated set of boundaries which are connected to 
produce a wire frame representation of the DBM. Various 
geometric characteristics such as intersection, proximity, 2D 
collinearity, and height frequency are utilized to regularize 
initial boundaries. The detailed explanation of the proposed 
methodology is presented in section 2. The performance of the 
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methodology is discussed in section 3. Then, concluding 
remarks are mentioned in section 4.   
 
 

2. METHODOLOGY 

As abovementioned the proposed methodology consists of a 
sequence of four steps: ground/non-ground point separation; 
building hypothesis generation; segmentation of planar patches 
and intermediate boundary generation; and boundary 
refinement and 3D wire frame generation. In this section, 
detailed explanation and experimental results are presented for 
each step. 
 
2.1 Ground/non-ground Point Separation 

The developed methodology for ground/non-ground separation 
is based on the assumption that non-ground points cause 
occlusions under perspective projection. In a perspective 
projection, the top and bottom of a structure are projected as 
two different points. These points are spatially separated by a 
distance referred to as the relief displacement. This 
displacement takes place along a radial direction from the 
image space nadir point, and is the cause of occlusions in 
perspective imagery. In this work, the presence of occlusions is 
detected by sequentially checking the off-nadir angles of the 
lines of sight connecting the perspective center and the DSM 
points, along the radial direction starting from the object space 
nadir point (Habib et al., 2007). Several synthesized perspective 
centers with heights close to the maximum elevation of the 
entire study area are introduced to more thoroughly detect the 
points causing occlusions. Figure 1 illustrates the basic concept 
of detecting non-ground points along a profile using a 
synthesized perspective center. By scanning for occlusions from 
different radial directions with multiple synthesized perspective 
centers, ground points are well-identified from the DSM. The 
DSM used in the analysis is generated by resampling the 
irregular LiDAR point cloud to a regular grid, using the nearest 
neighbor method to increase computational speed. After 
removing the effects caused by the roughness of the terrain, the 
non-ground points and ground points can be separated from one 
another. For more detailed explanation and experimental 
verification of this novel ground/non-ground point classification 
technique, please refer to [Habib et al., 2008].  
 

 
 

Figure 1. Basic concept of detecting non-ground points. 
 

In this paper, raw LiDAR point data over University of Calgary, 
Canada, is introduced. The study area includes building 
structures which are connected with other complex buildings. 
Figure 2 and 3 shows aerial photos and the LiDAR point cloud 
over the area of interest, respectively.   
 
 

 
 

Figure 2. Aerial photo over the area of interest. 
 
 

 
 

Figure 3. LiDAR points over the area of interest (colors are 
assigned according to their elevations). 

 
The ground/non-ground separation algorithm is applied to the 
LiDAR points over the area of interest. Figure 4 shows the 
points which are classified into ground and non-ground points. 
The points in blue and red indicate ground and non-ground 
points, respectively.   
 
 

 
 

Figure 4. Separated ground and non-ground points. 
 
2.2 Building Hypothesis Generation 

Once the LiDAR point cloud has been classified into ground 
and non-ground points, non-ground points are further analyzed 
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to derive hypotheses of building instances. The generated 
hypotheses are based on several point attributes as well as the 
spatial relationships among the non-ground points. More 
specifically, non-ground points are classified into points 
pertaining to planar or rough surfaces. Using an adaptive local 
neighborhood for each point, one can decide whether this 
neighborhood defines a planar surface or not. Then, a grouping 
technique is applied to collect neighboring points that belong to 
planar surfaces while considering proximity of them in 3D 
space. Finally, the derived groups are filtered to generate 
building hypotheses based on the size of the group and their 
height above the terrain. The generated hypotheses are based on 
the prior knowledge that buildings are usually large in size with 
a certain minimum height above the ground. Figure 5 shows the 
building hypotheses generated through these procedures. In the 
figure, the points with different colours belong to the different 
building hypotheses. One should note that the points belonging 
to the different hypotheses might be shown in the same color 
due to the limitation of the number of utilized colors. In 
addition, a single hypothesis might consist of points from 
several planes. This situation happens when a structure is 
formed by a series of connected planes with different slopes and 
aspects. 
 
 

 
 

Figure 5. Generated building hypotheses. 
 
2.3 Segmentation of Planar Patches and Intermediate 
Boundary Generation 

The following procedure segments the points that are in a single 
building hypothesis, but may come from physically different 
planes, into a group of planar patches. The proposed 
segmentation technique in this paper is a voting scheme that 
keeps track of the point attributes, as defined by an adaptive 
local plane through its neighboring points, in an accumulator 
array. More specifically, the procedure is composed of three 
sub-steps:  neighborhood definition; attribute derivation; and 
clustering of neighboring points with similar attributes. First, a 
neighborhood definition which considers both the three-
dimensional relationships between LiDAR points and the 
physical shapes of surfaces is introduced and employed (Filin 
and Pfeifer, 2006). The physical shapes of the surfaces on 
which associated points are located are incorporated into the 
neighborhood definition. This means that points located on the 
same surface are considered to be possible neighbors, while 
taking into account the proximity of the points. Points on 
different surfaces, on the other hand, are not considered to be 
neighbors, even if they are spatially close. This definition 
increases the homogeneity among neighbors. Neighbors are 
determined using a cylinder whose axis direction changes 
according to the physical shape of the object in question. It is 

for this reason that this neighborhood definition is referred to as 
the adaptive cylindrical neighborhood definition. In this 
research, point attributes are computed based on the 
neighboring points identified using the adaptive cylinder 
method. More specifically, each point has two attributes. These 
attributes are the normal distances between the local plane 
(which is defined by neighboring points through an adaptive 
cylindrical neighborhood definition) and two pre-defined points, 
shown as origin 1 and origin 2 in Figure 6. In addition, the 
figure illustrates the basic concept of point attributes 
computation.  
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Figure 6. Basic concept of point attributes computation. 
 
Once the attributes for all the points are computed, they are 
stored in an accumulator array that keeps track of the frequency 
of such attributes. As might be expected, points with similar 
attributes will lead to peaks in the accumulator array. Figure 7 
and 8 shows the examples of the scanned LiDAR points and the 
produced accumulator array using their attributes, respectively. 
The LiDAR points in this area represent a gable roof, which 
consists of two planes with different slopes. The computed 
attributes from these points are voted in the accumulator array. 
Two groups of similar attributes, produced from the points on 
two different roof planes, construct two high peaks in the array.  
 

 
 

Figure 7. Scanned LiDAR points from the area including a 
gable roof. 
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Figure 8. The produced accumulator array using the LiDAR 

points in Figure 7. 
 

Points contributing to the peaks are clustered while 
simultaneously considering their attribute similarity and the 
spatial neighbourhood among the points. In other words, the 
clustering procedure is implemented while globally assessing 
the attributes in the parameter space together with the local 
proximity of the points in the object space at the same time. 
This procedure provides a robust and accurate segmentation 
solution. Moreover, it is more efficient compared to the existing 
methods in terms of computation load due to the utilization of 
only two attributes in the procedure. Figure 9 displays the 
segmentation results produced from the LiDAR point cloud in 
Figure 7. In the Figure 9, the points in green and blue are 
clustered and recorded from two highest peaks in the 
accumulator array in Figure 8.   
 
 

 
Figure 9. The produced segmentation results from the LiDAR 

points in Figure 7. 
 

Figure 10 displays the results produced from the segmentation 
procedure applied to the generated building hypotheses in 
Figure 5. As before, the points in different colors belong to the 
different planar patches. One can compare these segmentation 
results, in particular those enclosed by the white solid ellipses, 
with the building hypothesis results in Figure 5. The points 
belong to a single building hypothesis have been separated into 
different clusters. As an additional output from the 
segmentation procedure, we use a least squares adjustment to 
derive an estimate of the plane of best fit through each cluster. 
 
 

 
  
Figure 10. Clusters produced from the segmentation procedure. 
 
The modified convex hull approach (Jarvis, 1977) is adopted to 
determine the boundary for each of the segmented clusters. The 
produced intermediate boundaries are displayed in Figure 11.  
 

 
 

Figure 11. Intermediate boundaries produced by using the 
modified convex hull algorithm. 

 
These boundaries will be used as initial approximations of the 
planar surfaces comprising the building model of a given 
hypothesis.  
 
2.4 Boundary Refinement and 3D Wire Frame Generation 

The last step of the proposed methodology utilizes the initial 
boundaries to come up with a refined set of boundaries, which 
are connected to produce a wire frame representing the DBM. 
The refinement process is based on several steps. The first one 
inspects the boundaries of the segmented patches to detect the 
presence of neighbouring planar patches which can be 
intersected (i.e., checks for the presence of ridge lines along 
gable roofs). After detecting the parts of the boundaries 
corresponding to the ridge lines the remaining boundaries of the 
sloping planar patches are further investigated. Next, horizontal 
planes are constructed by using the horizontal parts of the 
remaining boundaries. More specifically, height frequency of 
the boundaries is investigated to construct horizontal planes. 
The horizontal lines along the eaves of the sloping planar 
patches are acquired through the intersection between the 
constructed horizontal planes and corresponding planar patches. 
Then, the other remaining boundaries are regularized through 
Douglas-Peuker method and line fitting algorithms. After the 
refined lines are acquired by three different boundary 
regularization procedures, the proximity and collinearity in 2D 
space between the refined lines are investigated to figure out if 
the planar patches to which these lines belong are physically 
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connected through the vertical planes shared by them. The 
refined lines sharing the same vertical plane are recognized and 
utilized to derive an estimate of the vertical plane. Then, the 
lines are redefined based on the computed vertical plane. 
Finally, these lines are connected to construct a closed wire 
frame. Figure 12 displays the produced roof top wire frame 
through all the previous procedures. In addition, a 3D wire 
frame is generated using the average elevation of the ground 
around the buildings in Figure 13.  
 

 
 

Figure 12. Refined rooftop boundaries. 
 

 
 

Figure 13. Constructed 3D wire frame 
 
 

3. DISCUSSIONS 

The performance of the proposed methodology has been 
visually evaluated by the projected DBM onto the orthophoto.   
Figure 14 shows the main buildings in the entire study area and 
their refined rooftop boundaries (shown as red lines) projected 
on the orthophoto. Most of roofs in the figure are reconstructed 
correctly in terms of completeness of the structural shape.    
 
Detailed investigation of each roof is conducted by taking a 
closer look at Figure 15 and 16. Roof 1, 2, 4, 5, 6, and 7, which 
include orthogonal lines are reconstructed correctly in most 
parts. All the boundaries of roof 3, which are relevant to three 
different sloping planes, are well detected. Moreover, the non-
orthogonal lines on roof 8 are reconstructed quite well. 
However, some of small details, which are enclosed by white 
solid circles, are lost on roof 2, 4, 5, and 6 due to the occlusion 
in the LiDAR data, inaccurate initial boundaries, and small 
structures on the roof. 

 
 

Figure 14. Projected rooftop boundaries onto the orthophoto 
 

 
 

Figure 15. Boundaries of roof 1, 2, 3, 4, and 5 on orthophoto. 
 

 
 

Figure 16. Boundaries of roof 6, 7, and 8 onto the orthophoto. 
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4. CONCLUSIONS 

An automatic solution for DBM generation for complex 
structures from raw LiDAR data is introduced through four 
main procedures: ground/non-ground point separation; building 
hypothesis generation; segmentation of planar patches and 
intermediate boundary generation; and boundary refinement 
and 3D wire frame generation. First, a robust ground/non-
ground point classification technique is proposed based on the 
novel idea of detecting points that produce occlusions. A 
building hypothesis generation procedure is devised based on 
the geometric characteristics of man-made structures. A 
segmentation procedure which simultaneously considers 
similarity attributes and proximity in the object space to derive 
robust and accurate solution was then performed. In the last step 
of the proposed methodology, several geometric constraints are 
applied to delineate the boundaries and to construct 3D wire 
frames for complex structures. The experimental results prove 
that the proposed methodology can provide a relatively accurate 
solution from raw LiDAR data. Moreover, it is proved that the 
limitation of the LiDAR data resolution causes deterioration of 
the accuracy of DBM as well as loss of details, especially for 
complex man-made structures. The limitations of the LiDAR 
data in the generation of DBM can be overcome by 
incorporating high resolution imagery into the procedures. 
More rich semantic information from high resolution imagery 
will help to improve the accuracy of the DBM and to detect 
edge details of buildings. Therefore, further research on the 
integration of LiDAR data and imagery will be investigated as 
future work.   
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