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ABSTRACT: 
 
This paper shows in theory and in practice how to implement a 3D reconstruction algorithm. It uses image sequence taken with a 
handheld camera as input to reconstruct a scene up to an unknown scale factor. The camera's motion and intrinsic parameters are all 
unknown. We especially address to apply SIFT algorithm to find distinctive features. Feature matching is done through a 
Euclidean-distance based nearest neighbor searching. The fundamental matrix is then estimated by existing correspondences and 
sequentially used to refine matching. By recovering project matrix from fundamental matrix we get projective reconstruction. And 
finally we demonstrate how the projective reconstruction can be successively upgraded to affine and Euclidean reconstruction. 
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1. INTRODUCTION 

Concerning the reconstruction of 3D scene, there are commonly 
two approaches: (1) laser scanners and (2) image-based 
approach. These scanners are robust and accurate, but they are 
also costly, and have certain restrictions on the size and on the 
surface properties of the objects. They are also unable to capture 
the color information of the objects. The image-based method is 
built on the knowledge that has been acquired in computer 
vision and photogrammetry in the past 30 years. Despite of less 
accuracy, it reconstructs 3D model provided at least two images 
or a sequence of images that can be easily obtained by optical 
imaging devices (e.g., CCD camera). So it is relatively low cost 
which is extremely important for such applications in virtual 
reality, simulation and entertainment. Especially as the 
development of electronic technique in the past few years, 
digital cameras are more and more universalized and produce 
quality images. This excellent imaging device has attracted 
researchers' attention. 
 
The aim of our work is to create a system that allows users to 
make the reconstruction without other expensive and complex 
devices but a domestic handheld camera. The user acquires 
images by freely moving the camera with not very large 
viewport transformation around a static environment whose 
motions are unknown and whose intrinsic parameters are also 
unknown and may vary. The software system will do the 3D 
reconstruction following several steps with few human 
operations. 
 
In this work, a computer vision and photogrammetric approach 
for 3D reconstruction is described. The process consists of four 
parts: 
1) Image sequence acquisition and feature points extraction; 
2) Feature matching and refinement; 
3) Projective, Affine and Euclidean reconstruction; 

4) Point cloud generation and modeling. 
 
Figure 1 shows the architecture of the reconstruction. In the 
process, we put special emphasis on finding distinctive features 
and robustly matching them. For the capturing of images, we 
using a Canon A560 digital camera and no a priori information 
on camera internal and external parameters are assumed; all the 
required parameters are recovered from the images.  
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Figure 1. Architecture of Reconstruction 
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2. FEATURE POINT EXTRACTION 

Starting from a collection of images, the first step consists in 
detecting image feature points or so-called interest points in 
each image. Feature points are distinctive and invariant to 
different transformations and have high information content. 
Many algorithms are available, such as Harris operator (Harris, 
1988), SUSAN operator (Stephen, 1997). Since the images are 
of relative small viewport change and captured in different time 
and place, we use SIFT algorithm (Lowe, 2004) in our 
application to extract and describe feature points. 
 
The SIFT features are invariant to image scale and rotation. 
They are also robust to changes in illumination, noise, occlusion 
and minor changes in viewpoint. It is also shown that SIFT 
descriptors are invariant to minor affine changes (Lowe, 2004). 
The algorithm is performed in the following four stages: 
1) Extrema detection in scale space 
2) Refining keypoints location 
3) Keypoint orientation Assignment 
4) Generation of keypoint descriptor 
 
By the four steps keypoints are detected and described in SIFT 
descriptors that are computed over respective scales. Typically, 
a SIFT descriptor is of length 128 (8 orientation bins and 4 by 4 
cells for voting). Extracted feature points are marked in Figure 
2. 
 

 
 
Figure 2. Feature pints detected by SIFT algorithm. Six images 
from a sequence of indoor scene. The image size is 800*600 
pixels, and about 1000 features are detected in each image. 
Because of redundant keypoints at different scales there will be 
several duplicate points around a keypoint when transferred to 
original images. However feature point descriptors at 
multi-scales makes matching result invariant to scales.  
 

3. MATCHING CORRESPONDENCES 

3.1 Initial Matching 

General steps of matching feature points are illustrated in Figure 
3. We have got keypoints and now we are matching them across 
neighboring image pairs. 
 

Figure 3. General steps of feature point matching 

Euclidean distance between keypoints in different images is 
calculated to measure the similarity. 
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Small D indicates that the two keypoints are close and thus of 
high similarity. 
 
To matching a keypoint in candidate image, we find the closest 
and the second closest keypoints in reference image using 
nearest neighbor searching strategy. If the ratio of them is 
smaller than a threshold, the keypoint and the closest matched 
keypoint are accepted as correspondences; or else, the keypoint 
cannot be matched.  
 
3.2 Refining matching 

The above simple matching bases only on similarity of 
keypoints and inevitably produces mismatches. For image pairs, 
the epipolar geometry provides a constraint for identifying 
mismatches between feature points: corresponding keypoints 
are constrained to lie on epipolar lines. This relationship can be 
expressed as following: 
 
 

0Tu Fv =                              (2) 
 
 
where, F is the so-called fundamental matrix. u is an image 
point, u= [u1, u2, 1] T, and v is the corresponding point in 
another image, v= [v1, v2, 1] T. 
 
So we firstly using the initial matching result to retrieval the 
fundamental matrix and then apply it to refine matching. The 
3×3 matrix F can be computed just from image points and at 
least 7 correspondences are needed to compute it.  
Equation (2) can be written as:  
 
 

0Tu f =                               (3) 
 
 

where  1 2 1 2 1 2 2 1 1[ , , , , , ,1]Tu u u v u v v v u v=  

       11 12 13 21 22 23 31 32 33[ , , , , , , , , ]f F F F F F F F F F=  
 
Thus we know that if we are given eight matches we will be 
able to determine a unique solution for F, defined up to a scale 
factor. This approach is known as the eight point algorithm 
(Richard, 1997). 
 
Many solutions have been published to compute fundamental 
matrix, but to cope with possible blunders, a robust method of 
estimation is required. In general RANSAC-like algorithm 
(Fischler, 1981) and least median of the squares (LMedS) 
(Zhang, 1994; Scaioni, 2001) are very powerful in presence of 
mismatches. LMedS solves non-linear minimization problems 
and yield the smallest value for the median of the squared 
residuals. 
 
The computed epipolar geometry is then used to refine the 
matching process, which is now performed as guided matching 
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along the epipolar lines. This geometric constraint restricts the 
searching area and allows a higher threshold for the matching 
process. A maximal distance from the epipolar line is also set as 
threshold to accept a point. 
 
 

 
(a) 

 
(b) 

 
Figure 4. (a) Initial matching. There are about 5% mismatches. 
(b) Refined matching. By epipolar geometry constraint almost 
all correspondences are correctly matched. 
 
After these processes, the number of matched points between 
the image pair is around 58% of the extracted feature points. 
 
 

4. RECONSTRUCTION FROM IMAGE POINTS 

4.1 Projective Reconstruction 

Up to this stage of the process, we have got a number of reliable 
correspondences between each pair of contiguous images in the 
ordered subsequence and also estimated respective image pairs’ 
fundamental matrices. The set of N-1 fundamental matrices 
(given N images in the sequence) is then used to derive a first 
approximation of the set of N projective matrices Pj. For the 
first two images, we can compute Projective matrices P1 and P2 
as follows (Faugeras, 1992a; Beardsley, 1997): 
 
Decomposite fundamental matrix F= [e2] ×M21 where [e2] × is 
an antisymmetric matrix. e2 can be uniquely calculated up to a 

scale factor by solving linear equation 2 0Te F = . M21 can be 
many solutions but we just need to employ one of them. 
So we then get the projection matricesP1 and P2: 
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Once P1 and P2 are computed, the initial projective structure 
can be recovered: 
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where, X is a 3D point 
If there are more than one image pairs in the sequence, an 
updating procedure needs to be defined, so that all image pairs 
contribute to the constructed 3D points. In order to update this 
reconstruction with another image, the projective matrix P for 
the new image must be computed. In case P is known, we can 
reconstruct those X that are visible in at least two views of the 
previous images. Then iterating this process, we can compute 
the reconstruction from all the images. 
 
4.2 Toward Euclidean Reconstruction 

For simple reasons, the projective reconstruction may not be 
sufficient for visualization. Therefore we need a method to 
upgrade the reconstruction to metric one. This can be achieved 
by computing an upgrading matrix with a precondition of 
information about the intrinsic parameters of the camera. In the 
most general case they are constant but unknown. So the core 
issue now lies in the camera calibration. Here a self-calibration 
method using sense constraints is proposed. 
 
In this approach which can be fully automated we first retrieve 
the affine stratum by extracting pairs of parallel lines in the 
scene and computing the plane at infinity. Retrieving the affine 
structure amounts to define a projective basis set and maps it on 
a reference set. Five reconstructed points of the scene are 
required for this computation: one for the origin, three to define 
coordinate axes and planes, and a final one (not in the 
coordinate planes) representing the scaling effect along the 3 
coordinates axes. 
 
Then we go to the Euclidean stratum from the affine one. We 
extract pairs of orthogonal lines in the scene. The use of three 
pairwise orthogonal directions permit to rectify the affine 
coordinate basis up to three scale factors. To retrieve the 
Euclidean structure, up to a global scale of the scene, thee skew 
parameters are introduced to account for the non-orthogonality 
of the reference affine basis. A standard iterative technique then 
leads us to the solution. 
 
Thus, we now have a way of computing a Euclidean 
reconstruction of the scene without any knowledge of the 
camera parameters or of the scene coordinates. Only 
information about point and line matches, parallelism, and 
angular relations have been used. 
 
 

5. RESULT 

The experimental result for the reconstructed coarse 3D point 
structure is shown in Figure 5. Our next work is to reconstruct 
more accurate points and build a model with texture.  
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Figure 5. Result of 3D reconstruction from the indoor scene 
sequence. 
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