
A MULTI-SCALE LINE STRUCTURE FOR PROGRESSIVE TRANSMISSION OF
VECTOR DATA ACROSS THE WEB

REN Yingchaoa, *, ZHU Linb, YANG Chongjuna

aThe State Key Laboratory of Remote Sensing Information Sciences, IRSA, CAS, Beijing, 100101
bCollege of Resources Environment and Tourism, Capital Normal University, Beijing, 100037, China -

yingchaoren@gmail.com

Youth Forum

KEY WORDS: Multi-scale Line, Simplification, Multi-way Tree, Progressive Transmission

ABSTRACT:

This paper presents a multi-way tree based multi-scale line structure for progressive transmission of vector data. By topological
restraints, the structure maintains the consistent topological relations among the lines of different scales. By integrating the data of
the same scale into one certain level node, the structure provides more efficient hierarchical data management. And the order of the
points in the original line is described by the relative order of points in the multi-scale line tree, so that we can restore the line in any
scale, which also supports the modification of multi-scale line without rebuilding of the multi-scale structure. Meanwhile, the data in
different scale are independent of each other, so that we can store the data in different scale into different tables in database, which
will improve the first access efficiency.

Supported by the 863 Program of China (Grant No. 2006AA12Z208) and the CAS Innovation Program (Grant No. KZCX2-YW-

304-02).

1. INTRODUCTION

Geographic space is a complicated system with geographic
elements with self-similarity in different scales interacting with
each other. Geographic space in different scales represents
different geographic phenomena and geographic laws. In the era
of paper maps, people produced a series of maps with different
map scales to reflect different geographic phenomena in
different scales.

Geographic Information System (GIS) is an electronic tool to
manage maps. The concept of map scale in traditional map has
also changed. The functions of zoom in and zoom out make
maps be able to be displayed in any map scales. However,
traditional GIS can only manage maps with a single scale. So
zoom in operation doesn’t bring into the increasing of map
information, while zoom out operation makes map information
be too dense to be discerned so as to make it hard for users to
get main information in the map. Secondly, operations of zoom
in and zoom out are just to make maps with a single map scale
to be displayed with different view scales which cannot reflect
geographic phenomena in different scales in nature.

The data volume of geographical data is usually massive.
Although the bandwidth of the network has got remarkable
improved, the rapid growth of spatial data and the users’
demands to the high resolution spatial data soon exhausts the
limitedly improved bandwidth, which situation is more serious
in wireless network. Nowadays, the limited bandwidth of the
network has become an important bottleneck for the web
issuing and access of the massive, high resolution spatial data
across the web, which appears more serious to mobile devices
based on the wireless network, such as cell phones, PDAs, on
which a great deal of detailed data in the high resolution spatial

data cannot be displayed, while still occupy bandwidth to
download.

Progressive transmission of vector data provides a promising
solution to that problem. The skeleton data with low resolution
are transmitted to the client at first, then by users’ request the
detailed increment data are transmitted to the client and
integrate with the existing data on the client to restore the high
resolution data, so as to reduce the redundant data transmission,
improve the utilization of the bandwidth while preserving the
precision of the original data.

The key to the progressive transmission of vector data is to
generate the multi-scale representation of spatial data. The ideal
way is just to maintain a single base map with very large map
scale. By user’s demands, maps with small scales are generated
from that base map on the fly. The abstract of map is a process
of map generalization. Map generalization should preserve
topological and geometric consistency among maps with
different scales. So map generalization has to deal with
complicated and time-consuming geometric computation, and
meanwhile there exist a great deal of subjective factors which
are hard to be regularized. Till now, the efficiency and the
results of map generalization still cannot satisfy the demands of
on-the-fly map generalization. Anther way is to maintain a
multi-version map database. Similar to traditional paper maps,
the multi-version technology integrates a series of maps with
different map scales together. By users’ requests for different
map scales, the system accesses maps with corresponding scale
and returns them to the users, so that users can get maps with
corresponding map scales in different view scales. The multi-
version technology satisfies the demands of users for maps with
different scales. However, it also brings some new problems.
Firstly, the system has to maintain maps with different scales,
which heavies the burdens of system. Secondly, data update

9

brings problems of maintenance of integrity and consistency of
maps with different map scales. Thirdly, there inevitably exists
redundancy among maps with different scales. Massive spatial
data make redundancy great. And last, the multi-version
technology can only provide maps with maps with several
predefined scales. It cannot generate maps with any scale. A
compromising way is to pre-process the map with large map
scale by map generalization methods to generate a series of
maps with different map scales. The results are managed in a
hierarchical data structure and build vertical indexes among
maps with different map scales. For the one hand, this method
gets the high access efficiency as that in multi-version map
database, for another hand, it also avoids the problems of
maintenance of data integrity and reduces the redundancy.

There are two kinds of multi-scale data structures. One is object
collection hierarchical structure and another one is object detail
hierarchical structure. The object collection hierarchical
structure is on the spatial object level, which is corresponding
to selection and merging operators in map generation. The
spatial object appears or doesn’t appear in some hierarchy of
the tree according the weight of the spatial object in the spatial
object collection. This kind of data structure includes Reactive
tree, GAP tree etc. spatial objects own inner structure and the
details of the spatial objects varies according to the map scales.
Object detail hierarchical structures represent the degree of the
detail of line objects in different scales. Object detail
hierarchical structures simplify the line in different scales, and
stores the details structures into multi-scale structures like Strip
tree[2], BLG tree, etc. However, both Strip-tree and BLG-tree
are binary trees. The details with the same scales scatter in the
different levels of the trees. So the paper design a new
hierarchical structure, named multi-scale line tree (MSLT) [3],
to mange multi-scale line generates by line simplification
algorithms.

1 3 2 2 2 4 3 3 1…

The details with same scale lie in the same tree hierarchy. Only
the complete coarse skeleton line is stored in the first hierarchy
of the MSLT. And only increment data are stored in the other
levels of the tree. So the MSLT also supports progressive
transmission of vector data across Web. When the user request
line data with finer scales, the system only need to transmit
increment data and integrate with the existing data in the client
to restore the complete line in the finer scale So as to avoiding
repeating transmission. It’s very useful in network environment
with limited bandwidth.

2. GENERALIZATION ALGORITHM OF THE

MULTI-SCALE LINES

2.1 Generalization algorithm of the multi-scale lines

A geographical line is a complicated entity made up of lines
with different resolution, in which the line with high resolution
contains the information in the line with low resolution.
Therefore, a line can be represented as a coarse skeleton and a
series of details with different resolution.

nDDCC ⊕⊕⊕= 11

The generalization of multi-scale is a process to iteratedly
simplify details with different resolution. There are many
algorithms in map generalization to simplify lines, among

which Visvalingam-Whyatt(VW) is an algorithm to simplify
lines from bottom to top. At first, the algorithm eliminates the
most detailed, namely the least important, vertices from the
original line, and then iteratedly eliminate the most
unimportand points from the current line. The VW algorithm is
a progressive line simplification in according with the congition
of human being in the zoom in and zoom out of the map. In this
paper, we use VW algorithm to generate the multi-scale
structure of the lines.

At, first, a threshold list {ε | εi，εi<εi+1} under different scales
is predefined and they are applied into the line simplification in
turn from beginning of the smallest one. At the beginning, εn is
used to simplify the line C and get the result line Cn and the
detailed increment data Dn. Then simplify Cn with threshold εn-

1. Iteratedly simplify the line with threshold in the list until
reaching ε1, and we can get a skeleton line C1 of C and a series
of increment data Di according to threshold εi.

According to the level of each vertex in the line in the threshold
list, we assign a level id for each vertex. And we define the
level id of the corasest skeleton is 1, and that in the most
detailed level is n+1. based on the level id of the vertices, we
can construct the hierarchical structure of the line.

2.2 Topological consistency in line simplification

VW algorithm does not take topological relationships into
account. So after simplification, lines may intersect themselves
or other lines. For example, two lines separating from each
other may be intersected.

A A

Line simplification is a process of vertex elimination, so
topological inconsistency comes from wrong vertex elimination
(Fig 1). There are two kinds of vertices in the line, the vertices
which can be eliminated and the vertices which cannot be
eliminated. The first kind of vertices can just affect the
precision of the line, while the second kind of vertices may
cause inconsistency in topological relationships.
Uneliminatable vertices can be summarized into following two
categories:

1) endpoints of the arc,
2) inner vertices of the arc.

b
BC B C

P

c

P

L

A

L
P

A

a

Figure 1Topological inconsistency

10

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing 2008

The endpoints of the arc are key vertices in topological
relationship among spatial entities (Fig1 a, b). We can know
such vertices before line simplification. When we build
topological relationships on the spatial data without topological
relationships, the endpoints of arcs are this kind of
uneliminatable vertices.

Figure 2 . Multi-scale line structure

The inner vertices may cause the simplified lines to intersect
themselves or other spatial entities (Fig 1 c). Such vertices can
only be dynamically judged in the process of line simplification.
The regulation is that when there is a vertex p falling into the
triangle made up of vertex pi and his previous vertex pi-1and
next vertex pi+1, the elimination of pi is doomed to intersect
with himself or other lines, so vertex pi is a uneliminatable
vertex.

By the constraints of two kinds of uneliminatable vertices, we
can preserve the consistency of the topological relationships
after line simplification.

3. MULTI-SCALE LINE MODEL

3.1 Multi-scale line model

After iterated line simplification, we classify the vertices in the
line into different scale levels. Now we can build a multi-scale
line structure to preserve the simplification result, so that when
users access the multi-scale line, we just need to traverse the
multi-scale line structure rather than simplify the line on the fly.

The multi-scale line model is a tree structure, made up of three
kinds of nodes, the root node, level nodes and data block nodes.
Fig2 shows the hierarchical structure.

I) Root Node. Root node is the entrance of the multi-scale line
mode. It encapsulates the metadata of the line, such as id of the
line, the Minimum Bounding Box, the levels of the hierarchy,
and the access methods of the model. When users request data
from the model, the Root Node locate to the related scale level
according the scale information from users and call related
methods to generate the line or increment data according to the
scale.

II) Level Node. Level Nodes consist of main frame of the multi-
scale line model. All vertices with the same scale are
aggregated into the same level node. Compared with Strip tree
and BLG tree, the level in the model of the paper appears more
clear and easily to be extended.

The level node is defined as following in C++:

struct ScaleNode

{

 float fScale
long lLevelCount;;

 DataBlock *pBlockList;
};

fScale is the scale of the current level node. When users request
data, the model determines which level should be visited
according to fScale.

lLevelCount describes how many levels the model has.
pBlockList points a data node list.

In the multi-scale line mode, only the first level preserves the
complete coarse line, while rest levels just preserve the
increment data to the neighbouring previous level, which reduce
the data redundant data and is easy to be maintained.
III) DataBlock Node. Neighbouring vertices in the line with the
same scale make up of a DataBlock Node. As Fig 2 shows, the
first 4 vertices and the last 3 vertices make up of two data node
respectively.

The DataBlock Node is defined in C++ as following:

struct DataBlock
{

FPOINT *pPoints;
long lPointCount;
DataBlock *pSibling;
DataBlock *pChild;
long lChildCount;

};

pPoints recorods the coordinates of the vertices in the line.
lPointCount describes how many vertices in the Data Block
Node.

pSibling points next neighbouring Data Block Node in the same
level.

pChild points the DataBlock Node of next level just after
current DataBlock Node. And lChildCount describe how
DataBlockNodes of next level from current DataBlockNode to
his sibling DataBlock Node, which are used to build vertical
index among levels of the multi-scale line model.
The resolution of the vertices between two neighbouring
DataBlockNodes are higher than those in these two
DataBlockNodes, therefore they are simplified into a line
segment under current scale.

3.2 Vertical index

We have built the tree based hierarchical structure of the multi-
scale line. And we need to know how the vertices between
neighbouring levels are interrelated with each other, so as to
rebuild the original line structure level by level. The vertical

11

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing 2008

index provides us a way to interrelate the vertices between
neighbouring levels.

As Fig 3 shows, a line C on the Level_i+1 is simplified into a
line segment S in Level_i. vs and ve are two endpoints of S.
Therefore, if inserting the eliminated vertices on the detail level
between vs and ve, we can restore the line C in Level_i+1. The
pChild of BlockS points to the DataBlockNode on the
Level_i+1 with vs as his previous vertex, and lChildCount
records how many DataBlocks there are between vs and ve on
the Level_i+1. And now, we build the vertical index of the
multi-scale line mode. By traversing vertical index, we can get
increment data of the line on any scales, and restore the line on
any specified scales.

4. OPERATION ON MULTI-SCALE LINE

4.1 Generate line in the specified scale

When users request the line with coarsest level, we just need to
return them the line on the first level.

When users request line in the level i, we need to traverse the
multi-scale line mode with depth first. At first, the model
determines the scale level nLevel according to the users’
request, and that is the highest level the model traverse. The
algorithm first visit the first DataBlock dataBlock on the top
level of the multi-scale line model. If there is the child node in
dataBlock, the algorithom turns to the child DataBlock node
referenced by pChild to get detail data of the line and iteratedly
visit the child node until reach level i. Or from the DataBlock
referenced by pChild, the algorithm visits his lChildCount
sibling nodes. According to the visiting order, append the
vertices to a vertex array to generate the line C under the scale
level i.
4.2 Increment data

Increment data are the vertices eliminated when line is
simplified from scalei to scalej. Increment data not only express
the detail data, but also the inserting position of the detail data
in the original line, so that we can restore original data from
increment data.
The structure of the increment data is defined as following:
struct IncrementDataSet

{

double dScale[2]
GFPoints Points;
GNumbers Offsets;
GNumbers Anchors;

};

dScale is an array with two elements, scalei and scalej.
Points records the coordinates of the increment vertices.
After simplification, the line may be simplified into several sub
lines. As Fig 3 shows, the increment data between Level i+1
and Level i are made up of two sub lines.

Offsets records the number of vertices in each sub line. As Fig3
shows, since there are no more detailed data between two sub
lines on Level i+1, the two sub lines can be integrated into one
increment line.

Anchors array records the location where the increment data
should be inserted into when we rebuild line from scalej to
scalei.

The generalization of increment data is a process of traversing
of multi-scale line. At first, determine the level i and level j
corresponding to scalej and scalei. And then, by algorithm in
Section 4.1, traversing the multi-scale line mode, the only
difference is just to record the vertices between Level i and
Level j. But we need to count the number of vertices with the
level less than Leveli, and those are anchors.

4.3 Rebuild original line

Rebuilding is a reverse process of line simplification. By
gradually integrating increment data and simplified data, we
can rebuild the original line step by step.

Figure 4 Rebuild original line

After generating increment data, we can use increment data and
existing line data to restore line with high resolution. Some
parts of the line are simplified into line segments, therefore as
long as the eliminated vertices are inserted into original position,
the line is restored. In increment structure, each piece of
increment sub ling corresponds to sub line i under scale i.
Anchor array records the location of each piece of simplified
line in Leveli. We just insert increment sub line into subline i,

vs
lChildCount = n
pChild

…

 …

ve

 …
…

…

n

Figure 3 Vertical Index

S
C

Leveli

Leveli+1 incre
ment

BlockS BlockE

12

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing 2008

then we can restore the line under scale scale j. Fig 4 show the
process of line rebuilding.

5. EXPRIMENTS

Compared with models in [3][4], the model proposed in this
paper owns following characters:

1) The models in this paper support editing. We use related id
instead of absolute id to build vertical index in the line to
represent order of vertices in the line. When new vertex is add
into the line, we just need to modify several nodes in the multi-
scale line model in local area, without affecting the whole
structure.

2) Efficient database access. For the models in [3][4], even we
just request the line in the coarsest level, it still must get data
with all scale level. Spatial data are usually stored in the fields
of BLOB field. The efficiency to access the BLOB field is low.
The data in different level in our model are independent of each
other. Therefore, data in different level can be stored into
different tables or tablespaces. When users just need data with
coarsest scale, we just need read data of that level.

In this paper, we developed a prototype system for
generalization and representation of multi-scale line. The
system simplified the lines into three levels. The results are
showed in Fig 5. We can find the lines in the third level are
very close to the shape of original lines while the data volume is
just 31.4% of original one. So we still can get good visual
effects when users firstly request data and get satisfying web
response speed, which is meaningful to mobile terminals such
as cell phones and PDAs based on the wireless network.
From Fig 5 we can also find topological relationships are also
well persevered.

We compared the response time or our model and that in [3] for
retrieving the data with coarsest scale from database and render
on the screen. The experiment environment is PIII800，512M
RAM，SQL Server2000. The experiment result is showed in

Table 1. We use two line data packages in this experiment. The
data volumes of the two data packages are 1.9 MB and 3.2 MB,
and the data volumes of the first level after simplification are
0.57MB and 0.96MB respectively. We measure the response
time of user request to the coarsest level of data for the first
time. For the first data package, the response time of our model
is 0.42s while that of MSLT is 1.03s. Since there is less
database IO cost, it need less response time in our model.

Data Volume(MB) Response time for first users’ request(s)

Original Data First Level MSLT Our model

1.9 0.57 1.03 0.42

3.2 0.96 0.47 0.19

Table 1 response time of retrieving and rendering of data of

coarsest level between MSLT and our model

From above table, we can draw such conclusion that our model
is more efficient in retrieving and render coarsest data for the
first user access.

6. CONCLUSION

Scale is anther important property of spatial data besides
geometry and attribute. In this paper, based on the analysis of
spatial characters of spatial lines, by Visvalingam-Whyatt
algorithm, we simplify spatial line into different scales. In this
paper, we present a multi-way tree based multi-scale line model
to store and manage line information under different scales. By
increment data, the simplified lines can integrate with
increment data to restore original data. Compared with Strip
tree, our model can clearly manage data under different scales.
Compared with MSLT of Jones, our model supports edition of
multi-scale line, and own high database access efficiency.

REFERENCE

1. Buttenfield, B.P. Transmitting Vector Geospatial Data across
the Internet[C]. Proceedings GIScience, Lecture Notes in
Computer Science, Vol. 2478. Springer-Verlag, Berlin.
2002:51-64.
2. Ballard D H. Strip Trees: A Hierarchical Representation for
Curves. Communications of the ACM. 1981, 24(5):310-321. (a) First Level (b) Second Level
3. Chirstopher B. Jones, Ian M. Abraham. Design
considerations for a scale-independent cartographic database[C].
In Proceedings 2nd International Symposium on Spatial Data
Handlinig, Seattle 1986:348-398.

4. Min Zhou, Michela Bertolotto. A Data Structure for Efficient
Transmission of Generalised Vector Maps[C]. International
Conference on Computational Science 2004: 948-955.

5. Visvalingam M, Whyatt J D. Line generalization by repeated
elimination of the smallest area. The Cartographic Journal,
1993;30(1): 46-51.

(d) Original Line (c) Third Level

Figure 5 Multi-scale line of four levels

13

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing 2008

http://www.informatik.uni-trier.de/~ley/db/conf/iccS/iccS2004-4.html#ZhouB04
http://www.informatik.uni-trier.de/~ley/db/conf/iccS/iccS2004-4.html#ZhouB04

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing 2008

14

	1. INTRODUCTION
	2. GENERALIZATION ALGORITHM OF THE MULTI-SCALE LINES
	2.1 Generalization algorithm of the multi-scale lines
	2.2 Topological consistency in line simplification

	3. MULTI-SCALE LINE MODEL
	3.1 Multi-scale line model
	3.2 Vertical index

	4. OPERATION ON MULTI-SCALE LINE
	4.1 Generate line in the specified scale
	4.2 Increment data
	4.3 Rebuild original line

	5. EXPRIMENTS
	6. CONCLUSION
	REFERENCE

