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ABSTRACT: 
 
Surface emissivity is a measure of inherent efficiency of land surface. It is applied to convert heat energy into radiant energy. In this 
study, an unmixing pixel based algorithm was proposed to compute pixel effective emissivity for Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) data within Beijing, China. In this paper, vegetation, together with water and 3 kinds 
of manmade materials surface distribution is estimated through a part constrained linear spectral model after PPI (Purity Pixel 
Indices) calculated. Sample emissivities presented in this research were extracted from Jet propulsion laboratory (JPL) spectral 
database. Root Mean Square Error (RSME) results of the whole study area is 0.1012, 0.0952, 0.2178, 0.0941and 0.0951 for ASTER 
5 TIR (8.125~11.65µm) bands, respectively. This study suggests that this model is useful for the estimation of land surface 
emissivity, and it can be used as a rather simple alternative to complex algorithms. 
 
 

1. INTRODUCTION 

Surface emissivity is an important parameter for studies of 
global energy balance. Thus estimation of emissivity is of 
particular interest. 

A number of methods have been explored in order to retrieve 
land surface emissivity, such as Temperature-Independent 
Spectral Indices (TISI) methods (Tian et al., 2006). Some TISI 
methods are described in Becker and Li (Li & Becker, 1993; 
Becker & Li, 1995). This kind of algorithm combines middle 
wave infrared data (MWIR: 3.4-5.2µm) with thermal infrared 
data (TIR: 8-14µm) to measure emissivity. Gilleapie et al. (1998) 
developed this method for ASTER data and carried out a high 
accuracy results. But the accuracy of this algorithm depends on 
some assumptions and ties to atmosphere correction. NDVI 
methods proposed by Caselles et al. (1989) and developed by 
Van et al. (1993) supply a new technique to calculate emissivity, 
and performance successfully in natural surface. But this 
method assumes the land surface is mainly made up of two 
types-vegetations and soil, which is disagreement with urban 
surface. Wan et al. (1998) utilized classification-based 
emissivity method and applied results to split window method, 
which performed well and the accuracy of land surface 
temperature is ±1K (1996). Snyder et al. (1990) also used this 
method to retrieval global emissivity without considering the 
complicated urban surface. 
 
Urban surface is more complex. And spectral heterogeneity is 
notable due to the spatial resolution, especially for TIR image. 
So it is common for the existence of mixing pixel. And effective 
emissivity should be given more attention. This study utilizes 
Linear Spectral Mixture Analysis (LSMA) and spectral database 
to extract subpixel information and achieve pixel effective 
emissivity.  
 
 

2. METHOD 

2.1 Study Area and Data Processing 

Study area is located in Beijing city (Fig.1). Beijing, a 
metropolitan city, is a centre of China. Urbanization is 
continuing to accelerate in this megacity. The pattern of it is 
complex and pixel mixing phenomenon is outstanding. The 
selected region contains most of representation urban land 
features, including vegetation, water, central business distinct, 
and so on.  
 
 

 
 

Figure 1. Location of study area 
 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) L1B Metadata and L2B emissivity 
product data acquired on 31st August 2004 is used in this study. 
ASTER provides images in Visible/Near-Infrared (VNIR) with 
a spatial resolution of 15m, in Shortwave-Infrared (SWIR) with 
a spatial resolution of 30m, and in TIR with a resolution of 90m 
(Abrams, 2000; Yamaguchi et al., 1998). Hence, it is more 
suitable for urban studies at region scales than other satellite 
data, such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS), which has a resolution of 250m, 
500m, 1000m for VNIR, SWIR and TIR, respectively (Lu et al., 
2006).  
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ASTER emissivity product is obtained using a hybridized 
algorithm (http://asterweb.jpl.nasa.gov/documents.asp). This 
method first should estimate temperature and band emissivities 
by Normalized Emissivity method. And then the value 
calculated in the first step is normalized using a ratio-method. 
Next, Min-Max Difference approach is utilized to predict the 
minimum emissivity according experience equation. After 
several iterative calculations, emissivity product is acquired. 
This product accuracy is ±0.015. So it will perform well in 
many applications. 
 
Atmosphere correction and radiant correction has been done for 
L1B metadata, but without geometric correction. Because 
ASTER metadata contains Geometric Correction Tables (GCTs) 
for each telescope, geometric rectify can also be done according 
to a file published on March 31, 2006 
(http://lpdaac.usgs.gov/aster/ASTER_GeoRef_FINAL.pdf).  
 
2.2 Spectral Unmixing 

Owing to low spatial resolution of TIR data, mixing pixel 
problem will be encountered in any research, especially in urban 
area. Mao et al. (2007) assumed land surface is consisted of soil, 
vegetation, water and rocks. Ridd (1995) proposed a V-I-S 
(Vegetation-Impervious-Soil) model aiming at urban centre and 
suburb. In this research, study area lies in city centre, where 
vegetation, water and manmade-surface (included concrete 
surface, road, and residential area) have a high proportion and 
the proportion of soil is small. Thus in this study, urban surface 
consists of vegetation, water and manmade materials. 
 
In this study, part constrain line spectral mixture model is 
applied to unmix spectral. Line spectral mixture model is a 
technique to extract subpixel information, based on the 
assumption that the spectrum of a pixel is a combination of the 
spectral of all components within the pixel, and the weight 
depends on proportion of the area covered by distinct features 
on the ground (Lu et al., 2006). If there is any scatter between 
components in a pixel, LSMA can be expressed as the following 
equation (Yuan & Bauer, 2007): 
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Where  ρb=reflectance of pixel in band b 

ρi,b=reflectance of component(endmember) i in band b 
fi=area proportion of endmember i in a pixel 
eb=error of model in band b 

 
The crucial problem for LSMA performing successfully is to 
select high-quality endmembers (Lu et al., 2006; Zhou et al. 
2007). Many methods were developed for endmember selection 
(Lu et al. 2003). In this research, three kinds of endmembers 
(water, vegetation, and 3 kind manmade materials) were 
selected using Image-based approach after Purity Pixel Indices 
(PPI) calculating. The larger PPI value indicates spectral is 
more pure (Lu & Lin, 2004; Xia et al., 2004). And then a part 
constrained least-squares solution is utilized to unmix the 
spectral image into fractions due to its simplicity and ease of 
implementation (Smith et al., 1990; Lu et al. 2003).  
 

The fraction result is close to land surface feature distribution. 
Fig. 2 shows manmade fraction account for a majority in the 
central business distinct, and the fraction of vegetation is small. 
In some virescence place, such as in the park, proportion of 
vegetation is close to 1. In residential area, manmade materials 
and vegetation is blended owing to execution of environmental 
planning in the city. Aircraft in suburb has a high proportion of 
manmade fraction. The white colour in Fig. 2 (a) and (b) is 
water. 
 
 

 
(a)  Fraction of manmade materials 

 
 

 
(b) Fraction of vegetation 

 
Figure 2.  Fraction of land surface in study area  

 
2.3 Surface Emissivity Simulation  

Land surface emissivity depends on the composition, structure, 
wetness and observation conditions (i.e., observation 
wavelength, and angle) (Dozier & Warren, 1982). If there is N 
kinds of endmembers in a pixel, assuming temperature of all 
endmembers is the same, the relationship between endmember 
fraction and the effective emissivity ε in the pixel can be given 
as(Tian et al., 2006;  Chen et al., 2000): 
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Where εi= emissivity of endmember i 
           fi = fraction of endmember i in a pixel 
 
Then pixel effective emissivity εb in the study area can be 
shown as:  
 
 

, (1 )b v v m m b v mf f f f wε ε ε ε−= + + −                         (3) 
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Where εm,b=manmade material emissivity in band b 
             fv=fraction of vegetation in a pixel 
             fm =fraction of vegetation manmade material in a pixel 
 
Many researches prove spectral curve of different vegetation 
and water is almost same in TIR region (Mao et al., 2007; Nerry 
et al., 1990; Rubio et al., 1997; Sobrino et al., 2001; Sobrino et 
al., 2004; Stathopoulou & Cartalis, 2007). In this research, 
vegetation emissivity εv and water emissivity εw is valued as 
0.985 and 0.990, respectively. Manmade land surface emissivity 
is obtained by using spectral database provided by Jet 
propulsion laboratory (http://speclib.jpl.nasa.gov). After 
analyzing 46 kinds (including 6 kind concrete materials, 17 kind 
General Construction Materials, 5 kind Road Asphalts and Tar 
and 18 kind Roofing Materials) manmade material emissivity 
(Fig. 3), we utilize mean emissivity of concrete, general 
construction materials and road asphalts and tar materials in 
Eq.3. Because central business distinct building and 
surrounding of it in study area are covered by concrete. And 
residential is almost constructed by brick. Road is covered by 
asphalts and tar. 
 
 

 
 

Figure 3.  Mean emissivity of manmade sample 
 
2.4 Results and Discussion  

In order to analyze the emissivity obtained from unmix method, 
results were resampled to 90m resolution (Fig. 4), and then 
compared with ASTER emissivity product. Evaluation of this 
algorithm is done by using RSME (Root Mean Square Error) 
expressed as equation 4: 
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Where RMSEb= Root Mean Square Error of band b 
           εm,n=emissivity of pixel location at (m,n) baesd on 
unmixing algorithm 
          ,m nε =ASTER product emissivity of pixel location at 

(m,n) 

Band NO. Spectral Range (µm) RMSE
Band10 8.125~8.475 0.101
Band11 8.475~8.825 0.095
Band12 8.925~9.275 0.218
Band13 10.25~10.95 0.094
Band14 10.95~11.65 0.095

 
Table 1. RMSE of the whole study area 

 
Result shown in Tab.1 indicates our model has a larger RMSE 
in band 12 and band 10. This maybe because emissivity in 
8.925µm~9.275µm and 8.125µm ~8.475µm is much more 
variable, especial for manmade materials. Sample emissivities 
in these spectral ranges prove it as Fig. 3 seen:  
 
 

    
Band10                                                   Band11   

    
Band 12                                           Band 13 

 
Band 14 

 
Figure 4. Emissivity results of the model in different band 

 
Assumption of this model can also contribute to RMSE. First, 
we describe the most suitable condition in a pixel (without 
scattering between distinct land features and temperature is the 
same of them). The fact is scattering exits between features and 
temperature of them is of difference due to their different 
attributes. Second, just three kinds of manmade materials’ 
(concrete, general construction materials and road asphalts and 
tar) mean emissivity is utilized in the model. But emissivity of 
these materials has a range. Third, soil is not in consideration 
for this algorithm. And it maybe shown in some place, such as 
constructing area, park, and so on. Last, result of this method 
depends on LSMA. LSMA is computed by part constrained 
least-squares approach, leading to fraction of some feature 
larger than 1 and some lower than 0. When this problem 
countered, we will make the fraction equal to 1 or to 0, which 
also can make an error. 
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3. CONCLUSSIONS 

In this study, we have proposed an unmixing based algorithm to 
estimate the effective emissivity of a pixel. According to the 
research, some points were presented. 
 
1. It was validated to calculate effective emissivity using this 
method.  And it is easy to implement. There is two steps to 
compute emissivity. First, feature fraction in a pixel is extracted 
thanks to LSMA method. And then is pixel effective emissivity 
estimation, using a linear equation. 
 
2. Results obtained here come out several issues that would be 
worth studying in the future:  
(a) Considering scattering between features is better to estimate 
effective emissivity; 
(b) Introducing heterogeneity of surface for the model;  
(c) Correction of model parameters with feature fraction. 
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