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ABSTRACT: 
 
This study aims to determine the accuracy level at which different forms of land degradation can be mapped from medium-resolution 
satellite data, and to assess how accurately degraded land can be detected from multi-temporal satellite images. Land degradation in 
the form of salinization and waterlogging in Tongyu County, western Jilin Province of Northeast China was mapped from Landsat 
TM and ASTER images at 30 m using supervised classification, together with several other land covers. These land covers have been 
mapped at an overall accuracy of 80% from the TM image with the accuracy for individual covers ranging from 75% to 100% except 
settled areas. At 80.0%, the accuracy for barren land is higher than that for degraded farmland. The overall classification accuracy 
was achieved at 75.3% from the ASTER data. The accuracy for degraded farmland rose marginally to 76.7%. It is concluded that 
moderately degraded land can be mapped from both ASTER and TM data at over 75%. Severely degraded land can be mapped more 
accurately over 80%. Between 1989 and 2004 grassland decreased from 282.9 km² to 79.8 km² while healthy farmland increased by 
well over 120%. On the other hand, fallow land increased by 125.2% due to excessively high soil salinity. Besides, degraded 
farmland and barren land rose by 19.1% and 33.1%, respectively. Thus, inappropriate land reclamation and cultivation are blamed for 
soil degradation inside the study area. 
 
 

1. INTRODUCTION 

As one of the most common and serious environmental 
problems in the world, land degradation has affected two billion 
hectares (22.5%) of agricultural land, pasture, forest and 
woodland around the world (Oldeman et al. 1990). Around 5 to 
10 million hectares of agricultural land are lost to degradation 
annually. Globally, land degradation causes a loss of 
productivity in drylands valued between US$13-28 billion a 
year (Yadav and Scherr 1995). It is thus very important to 
determine the nature, spatial extent, magnitude, distribution, and 
temporal behaviour of degraded land in order to come up with 
effective prevention and rehabilitation measures.  
 
Due to its extensive distribution, land degradation is ideally 
monitored by means of remote sensing. For instance, 
information on vegetation cover, rain use efficiency, surface 
run-off and soil erosion can be derived from remotely sensed 
data. The combined use of such information highlights areas 
highly susceptible to degradation (Symeonakis and Drake, 
2004). Through monitoring changes in grassland biomass 
production and reclamation activities, Runnstrom (2003) 
detected the nature and scale of land degradation in the Mu Us 
Sandy Land of north central China. It is also possible to study 
land salinization and waterlogging from remote sensing data. 
Space borne satellite data have shown the potential in deriving 
information on the nature and spatial distribution of variously 
degraded lands, such as salinization and waterlogging (Dwivedi, 
1994). Areas affected by degradation can be identified and 
mapped from Landsat Thematic Mapper (TM) images (Raina et 
al., 1993). Information on the spatial extent and distribution of 
salt-affected soils can be derived from Landsat multispectral 
scanner (MSS) data. Visual interpretation of Landsat MSS and 
TM images, in conjunction with ancillary information and 
adequate ground data, ascertained the extent and spatial 
distribution of salt-affected soils, water-logged areas and eroded 

lands (Sujatha et al., 2000). Waterlogged areas can also be 
mapped from a 1:50,000 Landsat TM false-colour composite 
print. Waterlogged areas and salt-affected soils were delineated 
from Indian Remote Sensing Satellite (IRS)-1B Linear Imaging 
Self-scanning Sensor (LISS-I) and Landsat TM data via visual 
interpretation (Dwivedi et al., 1999).  
 
Long-term monitoring of changes in land degradation is usually 
accomplished by spatially comparing multi-temporal satellite 
images, a technique known as change detection. It involves 
looking for differences between two surface models that are 
obtained at different times. A number of change detection 
techniques have been devised for this purpose, such as 
transparency compositing, image differencing, post-
classification comparison, band ratioing, and principal 
components analysis (Mouat et al., 1993).  Although image 
differencing and image ratioing are relatively easy to implement, 
these change analysis methods based on raw pixel values 
require selection of an appropriate set of thresholds for 
measuring change. These thresholds are empirically derived to 
differentiate changes from background variations, which is 
rather challenging in some cases. By comparison, post-
classification change detection allows identification and 
mapping of amount, location and nature of differences in land 
covers (Rubec and Thie, 1980). Land-cover change maps 
derived from post-classification comparison yielded information 
on the spatial distribution and type of land-cover changes 
(Phinn and Stanford, 2001). Furthermore, post-classification 
comparison is the most accurate among image differencing, 
vegetative index differencing, selective principal components 
analysis (SPCA), direct multi-date unsupervised classification, 
post-classification change differencing and a combination of 
image enhancement and post-classification comparison (Mas, 
1999). However, it is unknown how accurate changes detected 
from post-classification can be. 
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The purpose of this study is to determine the accuracy level at 
which different forms of land degradation can be mapped 
automatically from medium-resolution satellite data such as 30 
m ASTER data. Another objective of this study is to determine 
how accurately degraded land can be detected from Landsat TM 
and ASTER data in Northeast China, an area that has suffered 
from various forms of land degradation.  
 

2. STUDY AREA 

Tongyu County is located in western Jilin Province, Northeast 
China, extending from 122002'13" to 123030'57"E in longitude 
and from 44013'57" to 45016’ N in latitude (Figure 1). With a 
temperate continental monsoon climate, this area has four 
distinct seasons. Annual temperature averages 5.10C, even 
though extreme temperatures can range from –320C to 38.90C. 
Mean annual precipitation mounts to 400-500 mm, 70-80% of 
which fall during July-August. There is an abundant supply of 
solar radiation in Tongyu. It is responsible for causing 
evaporation to be as high as 1 500-1 900 mm per annum, which 
is more than three times the average annual rainfall. Such a 
severe water deficit is conducive to occurrence of land 
salinization. Tongyu has a rich agricultural resource with arable 
farmland and grassland standing at 1.06 ha and 0.98 ha per 
person, respectively.  
 
 

 
 
The rich grassland and farmland resources in Tongyu make it 
suitable for developing farming and animal husbandry. In 
reality these resources have been exploited beyond their 
capacity. The land has been irrationally exploited in that 
grassland has been excessively reclaimed as farmland in direct 
response to population growth. Intensive grazing combined with 
intensive farming has led to the emergence of land degradation 
in the form of soil salinization and desertification. At 1.667 
million ha, the saline-alkali land area in Tongyu County 
accounts for 32.6% of the province’s total land area (Zhang and 
Wang, 2001). The expansion of the salinized land is driven 
largely by overgrazing. Land degradation has severely restricted 
development of regional land resources, restoration of a sound 
ecology and achievement of sustainable farming. 
 

3. METHOD 

3.1 Satellite Data Used 
Two types of satellite data were use in this study, Landsat TM 
and ASTER. The full-scene Landsat TM image was acquired on 
2 August 1989 (pass 120, row 29). This image has been 
geometrically referenced to the Universal Transverse Mercator 
(UTM) projection (zone 51, geodatum model: Map info) at a 
spatial resolution of 28.5 m. This full-scene image covers only 
the eastern portion of the County with little cloud coverage. A 
subarea (1 054 rows by 1 159 column) was delimited. Defined 
by two corners at (510 000, 4 970 000) and (543 003, 4 939 
989.5), it covers a ground area of 32 by 30 km². Located inside 
this sub-area is the most severely degraded land in different 
forms, including salinization, alkanization, waterlogging and 
desertification, the first three being the most noticeable. 
 
The ASTER data of 14 bands were recorded on 11 September 
2004. These raw bands were geo-referenced to the UTM 
projection using 17 widely distributed ground control points 
(GCPs) whose coordinates were identified from the geo-
referenced TM image. After eight of them were excluded from 
the first-order polynomial transformation, a horizontal accuracy 
of 0.9446 pixels was achieved for the three VNIR bands. This 
residual was reduced to 0.4684 pixels for the six SWIR bands, 
even though all the 17 GCPs were retained in the transformation. 
The geo-referenced VNIR and SWIR bands were output 
(resampled) to 30 m using the bilinear image transformation. 
The NVIR bands were then stacked with the SWIR ones to form 
a composite image, from which a ground area identical to that 
of the TM image was delimited. This subimage shares almost 
the same ground coordinates as the TM sub-image. For instance, 
its easting ranges from 510 000 to 543 000 and its northing 
from 4 970 000 to 4 940 000.  
 
3.2 Image Classification 
Prior to image classification, it was decided that land covers 
inside the selected area should be mapped into barren land, 
degraded land, productive farmland, fallow land, grassland, 
woodland, settled areas, wetland, and water. The same 
classification scheme was adopted for both Landsat TM and 
ASTER images except that a new category called “degraded 
farmland to grassland” was added to the ASTER data. Barren 
land refers to denuded land without any vegetative cover as a 
consequence of waterlogging. It represents the most severe form 
of land degradation. Vegetation dies completely after having 
been submerged underneath water for an extended period. 
Degraded land occurs in the form of soil salinization that has 
adversely affected farmland productivity. Vegetation under the 
influence of salinization is not so healthy and vigorous any 
more. Farmland falls into three categories, healthy, fallow and 
degraded. Healthy farmland was full of crops at the time of 
imaging. Fallow farmland lacked vegetative cover at the time of 
imaging because crops had been harvested or the land was not 
profitable for tilling any more. However, it is impossible to 
differentiate the two from the September ASTER image. 
Degraded farmland refers to former farmland that has been 
degraded to grassland. Its regular outline that is characteristic of 
farmland is still preserved. Grassland is the area used for 
grazing. Due to its fragility, grassland can be degraded very 
easily by overgrazing and waterlogging. Woodland refers to any 
bushes, shrubs, and forest. Settled areas are villages in the 
middle of fields. Water and wetland are areas covered by water 
at the time of imaging. Formed from accumulation of rainwater 
over shallow depressions, water bodies are seasonal lakes lack 
of any vegetation. Wetland represents shallow water bodies 
formed from enclosed paleo-channels that have been abandoned 
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Figure 1  Location of Tongyu county in northeast China 
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long time ago. Distributed inside wetland are aquatic plants, 
such as reeds.  
 
Training samples were selected for each of the covers in the 
classification scheme by delimiting polygons around areas of 
interest. Land covers enclosed inside these polygons were 
homogeneous. A completely new set of polygons were drawn 
from respective images. Once the derived signature was 
considered satisfactory, it was input into the classification 

process in which the classifier was set to maximum likelihood 
without prior probability. The land cover maps were 
thematically evaluated for their accuracy before they were 
generalized via clumping followed by elimination at a threshold 
of 40 pixels or about 1 ha. The thematic accuracy of the 
classified maps was evaluated quantitatively. The number of 
evaluation pixels ranged from 20 to 40. The actual number for a 
given cover was proportional to its predominance in the maps.  

 
Cover 1 2 3 4 5 6 7 8 9 Sum Uer’s 

Accuracy (%) 
1. barren 20  3     0  25 80.0 
2. settled 2 7 3  2   8 3 25 28 
3. degraded 1  30  2  5 2  40 75 
4. wetland   1 24      25 96.0 
5. grassland     28   1 6 35 80.0 
6. woodland    1  19    20 95 
7. water       25   25 100.0 
8. fallow  1   2   27  30 90 
9. farmland     1   5 24 30 80.0 
Sum 23 8 37 25 35 19 30 43 33 255  
Producer’s 
Accuracy (%) 

87.0 87.5 81.1 96 80 100 83.3 62.8 72.7  80.0 

 
Table 1. Error matrix for TM (1989) image. Across: classified; down: reference (κ=0.7739) 

 
Cover 1 2 3 4 5 6 7 8 9 10 Sum User’s 

Accuracy 
(%) 

1. bare 28          30 93.3 
2. settled  12 12     14 2  40 30.0 

3. degraded 2  46 1 4 1  1 4 1 60 76.7 
4. wetland  1 1 28       30 93.3 

5. grassland   1 5 22 1    1 30 73.3 
6. woodland   2 1 1 13  1 5 2 25 52.0 

7. water  2     25    20 100.0 
8. fallow   2     42 1 3 48 84.0 

9. farmland   1  1   5 31 1 40 77.5 
10. F to G*    4 1 1    24 30 80.0 

Sum 30 15 65 39 29 16 25 63 43 32 350  
Producer’s 

Accuracy (%) 
93.3 80 70.8 71.8 75.9 81.3 100.0 66.7 72.1 75.0  75.3 

Boldfaced figures: some of the pixels were identified as the background and thus not listed in the table 
*: farmland degraded to grassland. The same below. 

 
Table 2. Accuracy of results mapped from ASTER data at 15 m (κ=0.7221) 

 
3.3 Change Detection 
Change detection was carried out in ArcGIS by overlapping 
(union) the two maps. Prior to this overlay, the maps were 
vectorized using the raster to polygon conversion function. The 
overlaid map was later explored to identify the spatial changes 
in degraded land and the trend of land degradation.  
 
 

4. RESULTS 

4.1 Mapping Accuracy Achieved 
Overall, the land covers have been mapped at an accuracy of 
80% and a KAPPA value of 0.7739 from the 30 m Landsat TM 
image (Table 1). Among the user’s accuracies, the lowest was 
achieved at 28% for settled areas due to heavy confusion with 
fallow farmland, degraded farmland, farmland, grassland, and 
even barren land. The confusion with fallow farmland and 
grassland is caused by the spectral similarity among these 

covers that have a sparse or discontinuous vegetative cover 
component. Apart from this extremely low user’s accuracy, 
however, the accuracy for all other covers is quite high, ranging 
from 75% for degraded farmland to 100% for water. The 
accuracy for degraded farmland is lowered by its mixture with 
four other covers. Of the 40 evaluation pixels, 5 represent water, 
2 represent fallow, and 2 represent grassland. Usually, water is 
rarely confused with other covers thanks to its unique spectral 
signature and spatial uniformity. Its confusion with degraded 
farmland stems from the fact that vegetation submerged inside 
water in the rather shallow lakes and ponds is still detectable 
from the satellite image. At 80.0%, the accuracy for bare ground 
is higher than that for degraded farmland. It has been mixed 
with degraded land (3 out of 40 pixels), and the background (2 
pixels). Unlike user’s accuracies, producer’s accuracies have a 
much narrower range from 62.8% to 100%. The highest user’s 
accuracy was achieved for woodland whereas the lowest 
accuracy for fallow farmland. These percentages demonstrate 
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that land degradation can be mapped at a reasonable accuracy 
from the 30 m Landsat TM data. 
 
The overall classification accuracy for all land covers was 
achieved at 75.3% from the 15 m ASTER data, slightly lower 
than that from the TM image (Table 2). This lower accuracy is 
accounted for by two factors. First, the ASTER image was 
recorded at a later date (11 September) than the TM image (2 
August). By 11 September most crops have entered the 
senescence stage. This makes the accurate differentiation 
between non-vegetative and vegetated covers more difficult to 
achieve. On the other hand, all crops are still growing 
vigorously by 2 August. This vigour facilitates the identification 
of vegetative covers. Second, there is one more cover (grassland 
degraded from farmland) in the classification results. Mapping 
of more covers means that the chances of making a wrong 
classification are higher.  

 
User’s accuracies of the classification range from 30% to 100%. 
Seven of the mapped covers have a user’s accuracy below 80%. 
The least accurately mapped covers are settled areas (30.0%) 
and woodland (52.0%). At 93.3%, the accuracy for bare ground 
is the second highest thanks to its spatial homogeneity. Only 2 
out of 30 pixels were mixed with the background. The accuracy 
for degraded farmland is lower at 76.7%. Its confusion has 
occurred with farmland (4), grassland (4), barren land (2), 
wetland (1), grassland (1), and woodland (1). Since degraded 
land is either distributed with some vegetation or associated 
with fully covered but not so healthy vegetation, it is much 
more difficult to be mapped accurately than bare ground. Unlike 
user’s accuracies, producer’s accuracies are much more 
consistent for all covers, having a narrow range of 62.8% to 
100%.  

 
Cover 1989 2004 Change 

 km² % km² %  
Bare ground 39.1 4.0 58.2 5.9 +19.1 

Degraded farmland 328.9 33.2 362.0 36.5 +33.1 
Fallow farmland 103.1 10.4 228.3 23.0 +125.2 
Healthy farmland 86.8 8.8 100.7 10.2 +13.9 

Woodland 12.1 1.2 19.1 1.9 +7.0 
Settled area 61.5 6.2 99.7 10.1 +38.2 
Grassland 282.9 28.5 79.8 8.1 -203.1 

Water 23.1 2.3 20.1 2.0 -3.0 
Wetland 53.4 5.4 23.0 2.3 -30.4 

Sum 990.9 100.0 990.9 100.0 0 
 

Table 3. Mapped land covers from TM and ASTER data and their change from 1989 to 2004 
 

Aster 2004 
 Land Cover 1 2 3 4 5 6 7 8 9 Sum 
1 Degraded 219.2 36.6 12.2 10.7 10.1 2.6 24.6 4.7 5.3  

2 Barren 21.5 16.4     0.7  0.3  
3 Fallow 10.9  45.8 0.7 8.5 0.6 10.8    

4 Grassland 70.9 0.3 99.4 11.0 52.0 7.0 35.3 0.4   
5 Farmland 4.7  50.3  17.9 1.4 5.0    
6 Woodland 1.7  1.0 3.2 1.4 1.0 0.1 3.5   

7 Settled 18.2 0.8 13.4 0.6 5.2 0.7 19.5    
8 Wetland 8.1 0.2 6.1 4.1 5.4 5.5 3.2 13.9 4.0  
9 Water 6.8 4.0  0.4 0.1 0.3 0.4 0.4 10.5  

Sum 362 58.2 228.3 30.8 100.7 19.1 99.7 23.0 20.1  
*: across: land cover in 1989; down: land cover in 2004. 

 
Table 4. Change in land covers between 1989 and 2004 (unit: km²)* 

 
4.2 Detected Changes in Land Degradation  
In 1989 the three most dominant land covers within the study 
site were degraded farmland (328.9 km²), grassland (282.9 km²), 
and fallow farmland (103.1 km²) (Table 3). They account for 
72.1% of the total area (Figure 2). In 2004 the most 
predominant land covers were degraded farmland (362.0 km²), 
fallow farmland (228.3 km²), and healthy farmland (100.7 km²) 
(Figure 3). Significant changes occurred to grassland, farmland 
(both healthy and fallow), and degraded land over the study 
period. Grassland decreased from 282.9 km² to 79.8 km² or by 
over 200% while healthy farmland increased by well over 120%. 
These changes indicate a general trend of conversion from 
grassland to farmland in direct response to over population. The 
land was used much more intensively to produce more grains to 
feed the ever increasing population. Grassland was reclaimed as 
farmland on a massive scale. This type of change in land cover, 
however, may not be sustainable, as confirmed by the huge 

increase (125.2%) in fallow farmland. Although some of the 
increased fallow farmland was due to crops being harvested by 
the imaging date of 11 September, it is quite possible that others 
were left fallow due to excessively high soil salinity. 
Inappropriate land reclamation and cultivation have led to soil 
salinization. The deteriorating degradation situation can be 
appreciated from the rise in degraded farmland and bare ground, 
which expanded by 19.1% and 33.1%, respectively. 
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Figure 3. Land cover map produced from 15 m ASTER (2004) 
data. 
 
The above discussion shows the general trend of changes 
among degraded lands and other covers. The specific changes 
among all land covers are presented in Table 4. In this table 
there are many minor changes valued at no more than a few 
square kilometres. These changes are likely to be associated 
with artificial errors in image classification. Thus, they are not 
discussed here. Instead, this discussion will focus on those 
major changes. Of the newly increased 36.6 lm² originated from 
degraded land. On the other hand, 21.5 km² barren land changed 
to degraded land. Another significant trend in land cover 
changes is the drastic rise in fallow land. The source covers for 
the newly increased fallow land are grassland (99.4 km²) and 
farmland (50.3 km²). Therefore, overgrazing has caused the land 
to be grazed profitably. Over cultivation has led the land to be 
abandoned due to the reduced productivity. 
 
Degraded land is the cover that increased its acreage from all 
other covers. Among these covers, the chief ones are grassland 
(70.9 km²) and barren land (21.5 km²). The increase from 
settled areas is most likely a result of misclassification in the 
1989 results. Grassland is highly vulnerable and can be 
degraded easily. By comparison, farmland is not easily 
degraded. There is also a huge change (52.0 km²) between 
grassland and farmland, an outcome of land reclamation. 
 

4.3 Accuracy of Change Detection 
It is very cumbersome to assess the accuracy of detected 
changes, a process that involves examining land covers on both 
images simultaneously. In order to minimize the length of 
assessment, it was decided to restrict the assessment to two 
major types of changes, from fallow farmland to degraded land, 
and from grassland to degraded land. A total of 30 evaluation 
points were selected. Checked against the ground truth as well 
as the original colour composite, it was found that five of the 30 
points did not represent the right kind of change, resulting in an 

accuracy of 83.3%. The accuracy for grassland-to-degraded 
land was lower at 80% as changes at six of the evaluation pixels 
were not correctly detected.  
 

5. CONCLUSIONS 

This research has ascertained that the ASTER image of 15 m 
resolution produced a slightly lower overall accuracy (75.3%) 
than the 30 m TM image (80.0%) due to a high degree of data 
redundancy among its SWIR bands. However, the accuracy is 
comparable for degraded land, but much higher for bare ground. 
Therefore, ASTER data are conducive to achieving a higher 
mapping accuracy for severely degraded land than TM data, but 
has little advantage over TM data in mapping moderately 
degraded land.  
 
Land cover changed on a massive scale from grassland to 
farmland. However, the newly reclaimed farmland may not be 
cultivated sustainably, as a huge amount of farmland was 
degraded during the same study period. The degradation 
situation has worsened with a rise in barren land and degraded 
land. Moderately degraded (e.g., salinized) land can be mapped 
from both ASTER and TM data at a reasonable accuracy (e.g., 
over 75%). Severely degraded land (e.g., barren land) caused by 
water-logging can be mapped at a higher accuracy of over 80%. 
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