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ABSTRACT:  
 
Linear Spectral Mixture Model－LSMM which is prevailing presently is one of pixel unmixing models,the unmixing-accuracy of 
which is restricted by kinds of factors,but now the research about LSMM is mostly focused on appraisement of linear hypothesis 
relating to itself and techniques used to select endmembers, nevertheless, the environment conditions of study area which could sway 
the unmixing-accuracy such as atmosphere reflectance or scatteration and terrain undulation are not studied.This paper probes 
emphatically into the accuracy uncertainty of LSMM resulting from the terrain undulation with reference to unmixing vegetation 
abundance under LSMM. ASTER data set was chosen and the C terrain correction was applied to it. Based on this, vegetation 
abundances were extracted from both pre-C corrected and post-C terrain illumination corrected ASTER using LSMM, then the 
regression analysis between vegetation abundance and vegetation indices(NDVI and MVI) was further conducted to assess the 
unmixing accuracy which quantitatively measure the impact of terrain illumination on LSMM. The results indicate that terrain 
undulation could dramatically constrain the application of LSMM in inversion of vegetation abundance. A improved unmixing 
accuracy of 17.6% and 18.6% for R2 was achieved in regression against to NDVI and MVI respectively because of the removing 
terrain undulation by C correction method. Especially, effective removal or minimization of terrain effects is essential in 
mountainous areas. This study can also provide new theory basis for LSMM applications in mountainous areas. Though we took 
vegetation abundance as a case study, it should be envisioned that the similar result for other endmember types (water, barren soil, 
impervious area and so on ) could be achieve because of the same impact mechanism of terrain undulation and the identical unmixing 
procedure with LSMM. 
 
 

1. INTRODUCTION 
 

Information of land surface targets observed by remote sensing 
is measured spatially by pixels. Because of the the heterogeneity 
of ground features and relatively coarse spatial resolution of the 
satellite borne imagery characterized by 
TM,ETM+,MODIS,NOAA/AVHRR and so on., it is common 
that mixture spectra are generated when the pixel is occupied by 
more than one land-cover class (Ichoku &Karnieli, 1996). The 
effective information interpreted from mixture pixels is limit for 
quantitatively analyzing the characteristics of the targets. So a 
large number of sub-pixel models are developed, such as Linear 
or non-linear Spectral Mixture Model, Probabilistic model, 
Geometric-optical  

 
 

2. TEST SITE AND DATA 
 

Considering the computational burden and representation, we 
choose the rectangle-shaped suburb area of Fuzhou(26°10′N, 
116 ° 21 ′ E at center) where the land covers are 
abundant(Fig.1). The site is covered by cropland, water, forest 
vegetation which is dominant, urban cover which mostly locate 
at SW of the site and bare soils. The terrain condition within the 
area is relatively undulate with elevation from 50m to 1000m, it 
is appropriate to investigate the impact of terrain undulation on 
LSMM. 

 

As one of the recent developments in remote sensing 
technology , Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) provide substantial 
improvements over the traditional multispectral sensor, such as 
Landsat thematic mapper (TM), in spatial, spectral and 
radiometric resolutions, and has become a vital data source for 
earth science researchers (Fang Qiu et al,2006). ASTER is a 
multispectral scanner that produces images of high spatial 
resolution launched on July, 1999 aboard on the first platform 
of NASA's Earth Observing System –Terra. The instrument  
has three bands in the visible and near-infrared (VNIR) spectral 
range (0.5-0.9 μm) with 15-m spatial resolution, six bands in the 
shortwave infrared (SWIR) spectral range (1.6-2.4 μm) with 
30-m spatial resolution, and five bands in the thermal-infrared 
(TIR) spectral range (8-12 μm), with 90-m resolution (Kahle et 
al.,1991;Abrams,2000). An additional backward-viewing 
telescope with a single band duplicating VNIR band 3 could 
provide the capability for same-orbit stereogram metric data at 
15m spatial resolution. 
 
Another appealing aspect of ASTER data is the open 
availability of its data and even the on-demand standard 
products for research use are at very low cost (Rowan & Mars, 
2003). 
 
With the advantage of ASTER data described above, we 
collected ASTER data in Fuzhou area attempting to make use of 
the improved spatial and spectral information of ASTER data. 
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Figure 1 Position of test site 
 
 

3. METHODS 
 

3.1 Data processing 
 
The ASTER data used in this study are cloud free level 1B data 
acquired on November 24, 2001. The image has been 
pre-georeferenced to UTM Zone 50 North projection with 
WGS-84 datum. The L1B data are in HDF format which 
contain 15 bands image data, radiance conversion coefficient 
and ancillary data(Fujisada, 1998), when the data were imported 
into the ENVI processing system, the conversion coefficient  
was automatically applied and simultaneously the digital 
numbers of ASTER were calibrated to radiance. Only the first 9 
bands in VNIR and SWIR of ASTER were selected for 
subsequent analysis because the 5 TIR bands were not relevant 
to the reflectance of land surface objects. A Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes- FLASSH based 
radiometric correction was applied for the first 9 
bands .Furthermore, The bands processed above were then 
stacked into one file and resampled to 15*15 m pixel size  
using nearest neighbor algorithm .Finally a 1280*750-pixel 
image was clipped from ASTER data as test site. 
 
To eliminate the terrain undulation ,A 1:10000 digital elevation 
model (DEM) covering study area was collected and then the 
aspect image and slope image were calculated from the DEM 
with ArcGIS platform. 

 
3.2 C Terrain undulation correction 
 
Optical imagery is usually affected by variations in brightness 
due to terrain. The terrain illumination are very common in the 
satellite imagery captured on undulating earth surfaces , and it 
could lead to that the same objects display totally different 
spectral radiance or contrarily different objects exhibit the 
similar spectral value. Specially an object lying in shadow 
receives less reflectance than the same object on the sunny side
（Klaus I. Itten & Peter Meyer,1993）. In a word, the same 
targets therefore despite their equal reflectance display varying 

spectral radiances due to the topographic undulation under the 
same sun position. During the selection procedure of 
endmembers in LSMM, terrain undulation could pose 
ambiguity, and even lead to false selection or omission, 
accordingly further sway the unmixing result. 

Terrain illumination could be corrected by several 
methods, but previous literature shows that C-correction is the 
most effective illumination correction algorithm. (Teillet et al., 
1982;Meyer et al., 1993) .C-correction is therefore chosen for 
terrain illumination correction of ASTER data in our study. The 
basic C-correction formula used as follows: 
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Where , ：cosine of sun’s incidence angle for pixel 

； 

cos( )i
i

TL : radiance observed for sloped terrain 
(before C-correction)； 

HL : radiance observed for horizontal surface 
(after C-correction)； 

a、 b ： intercept and slope of the linear 
regression line； 

           s: slope for pixel i ; 
z：zenith of sun on image collecting time; 
β : azimuth of sun on image collecting time; 

'β ：aspect for pixel ； i
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For the ASTER scene used in our study (collected on 
11/24/2001) the sun information checked from  ASTER HDF 
head file was as follows: 
 

Sun elevation:40.902706（complementary angle of zenith） 
Sun azimuth: 161.336042 
 

With the sun information listed above, combining the aspect and 
slope calculated from DEM (section 3.1),the C-correction was 
applied to ASTER data with 9 bands processed in section 3.1. 

The images before and after C-correction were showed in Fig.2. 
furthermore, the spectral profiles along a random line across 
mountain area in the before and after C-correction ASTER 
image were also given in Fig.3.(two random lines shared the 
same location and distribution). 
 
 
 
 
 

 
 

Figure 2 ASTER images of pre-C corrected (a) and post-C corrected (b) (bands132 for RGB) 
 

 
 

Figure 3 Spectral profiles along a random line across mountain area in the pre-C (a) and post-C (b)corrected ASTER image (two 
random lines shared the same location and distribution). 

 
 

3.3 Linear spectral mixture model 
 
When using LSMM, the spectra signals of a pixel are expressed 
linear combination of finite number of endmembers weighted 
by their abundances. According to the restriction on abundances, 
a number of approaches have been developed to analyze 
LSMM(Ichoku & Karnieli, 1996), such as unconstrained 
method, augmented matrix method, sum-to-one constrained 
method and full constrained method(Xin Miao et al,2006), 
where the augmented matrix method and the sum-to one 
constrained method confine the sums of endmember 
abundances to be one or close to one (Smith et al., 1990), and 
he fully constrained method further requires the endmember 
abundances to be positive (Brown et al., 1999, 2000; 

GarciaHaro et al., 1996; Settle&Drake, 1993;Shimabukuro & 
Smith, 1991), here we chose the fully constrained LSMM, and 
the basic algorithms for a pixel were as follows: 
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where， iL λ ：reflectance or radiance for pixel  in 
band

i
λ ; 

      kif ：abundance of endmember k  for pixel 

； i
      kR λ ：reflectance or radiance value of endmember 

in bandk λ ； 

      iλε ：residual of pixel  in bandi λ ； 
       ：the number of Endmembers in the image, 

which is less than the number of bands plus 
one； 

n

       RMS：root mean square error for pixel . i
 

Linear Spectral Mixture Model includes two sequential 
processing steps: Endmembers selection and linear spectral 
unmixing . The first step is very important and pivotal. Before 
solving a spectral mixture model, endmembers with unique 
spectral signatures need to be identified(Xin Miao et al,2006). 
Image endmembers have an advantage over library endmembers 
because they are collected under nearly the same conditions and 
it is the most common method to collect endmember 
spectra(Plaza et al, 2004). In addition ,the existence of possible 
vertical scaling anomalies in ASTER data and SWIR crosstalk 
from band 5 and band 9 makes the data difficult to use for 
spectral analysis based on direct comparisons with library or 
field spectra (Fang Qiu et al,2006;NASA ASTER,2004). 
Therefore, image endmembers were used in this research.  
 
Previous literatures(Li,2004; Van der Meer & De Jong,2000) 
demonstrated that the spectral correlations between 
endmembers could negatively affect the abundance estimates 
and to enlarge the separabilities between endmember spectra 
was essential for unmixing successfully. Wu (2004) discussed 
in his research that significant brightness variation witch could 
blur the separation of object spectra existed in the spectra of 
endmember, and simultaneously, proposed a normalization 
method to remove or reduced the spectra variance while 
maintaining the useful information to separate the 
endmembers .To magnify the separabilities between the 
endmember spectra, normalization approach was applied to 
pre-C corrected and post-C corrected ASTER data as follows: 
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Where, bL is the original reflectance or radiance for band b in 

a pixel; bL is the normalized reflectance or radiance for band b 
in a pixel; n is the total number of bands (9 for ASTER imagery 
in this study). 
 
To effectively extract endmembers from relative high 
dimensional ASTER data and to reduce subsequent 
computational requirement, a minimum noise fraction (MNF) 
transform was introduced into to reduce the dimensionality and 

to segregate the noise in the original and terrain corrected 
ASTER data. The MNF transform is composed of two 
consecutive standard principle component transforms(PC) 
producing the result data that were not correlated and were 
arranged in terms of decreasing information content with 
increasing MNF band number (Green et al,1988; Research 
Systems, Inc., 2002). Because the information content in the 
higher-order MNF eigenimages from 1 to 7 in both original and 
C corrected ASTER imagery was over 95%, consequently, 
seven ASTER MNF eigenimages was retained for subsequent 
ata processing . 

adopted to the MNF images to select 
e most pure PPI pixels. 

s extracted from 
o ASTER data sets were displayed in Fig.4. 

egetation abundance images 
beling F1 and F2 were derived. 

d
 
Unlike training site during classification of multispectral data, 
which takes the mean spectral value of the site as the spectrum 
of corresponding class, identifying endmember pixels whose 
spectra are extreme  is a complex procedure which usually is 
equipped with rigorous mathematical algorithms. Especially it is 
much more difficulty in relative coarse resolution imagery due 
to the existence of a number of mixture pixels. To determine 
automatically the pure endmembers, the algorithm namely Pixel 
Purity Index(PPI) was applied to the MNF 
eigenimages(generated from pre-C corrected and post-C 
corrected ASTER) respectively chosen from above procedure. 
By repeatedly projecting n-dimensional scatter plots of the 
MNF images onto a random unit vector, two PPI images were 
formed in which the digital number of each pixel corresponded 
to the total number of times that the pixel was judged as 
spectrally pure in all projections. Typically, the brighter the 
pixel in the PPI image the higher the relative purity because it 
was more frequently recorded as being a spectrally extreme 
pixel(Boardman, 1993; Boardman et al., 1995). To reduce the 
number of pixels to be analyzed for endmember determination 
and to facilitate the separation of purer materials from mixed 
pixels(Fang Qiu et al,2006), a iteration number of 10000 and a 
threshold factor of 2.5 is 
th
 
To further refine the selection of the most spectrally pure 
endmembers from the derived two-dimensional PPI image and 
more importantly, to label them with specific endmember types, 
it is essential to reexamine visually the selected pixels in the 
n-dimensional feature space and to assign them manually to 
appropriate types(Boardman, 1993; Boardman and Kruse, 1994). 
So two or more MNF eigenimages were selected to form a 
n-dimensional scatter plot. All the pixels that were previously 
selected using the PPI threshold procedure are displayed as 
pixel clouds in the n-dimensional spectral space. With 
interactive rotation and visualization in the spectral space, the 
convex corners of the pixel clouds can be located and 
designated as the purest spectral endmembers. In our study any 
combination of bands were selected and the mean spectra of 
endmember which was represented one type were extracted. 
Finally, five major types of endmembers were determined from 
pre-C corrected ASTER imagery and labeled with different 
types including vegetation, water, impervious area, bare soil and 
shadow, similarly four endmembers from post-C corrected 
ASTER imagery and named vegetation, water, impervious area, 
and bare soil , the spectra of the endmember
tw
 
With the endmembers collected previously full constrained least 
square LSMM was applied to pre-C corrected and post-C 
corrected ASTER data and the v
la
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Figure 4 Normalized spectral profile of endmembers extr ected(left) and post-C corrected (right)ASTER 
imagery in test site. 

 

 
4. RESULTS AND DISCUSSION 

 
.1 Comparison analysis  

ld be dramatically reduced by C method employed 
bove. 

ing spectral radiance due to the topographic 
ndulation. 

.2 Regression and validation the C method 

images were calculated. Unfortunately we did not collect the in 
situ vegetation abundance data when the ASTER image was 
acquired. But literatures showed that the vegetation abundance 

nd modified 

           (7) 

acted from pre-C corr

 
 

4
 
In mountain area, the terrain undulation effect which could 
cause shadow or occlusion is not ignored, shadows frequently 
occur in airborne or space-borne imagery in terrain area with 
steep slope when the sun elevation angle is low. A number of 
technologies were developed to circumvent the terrain 
illumination effect, here we selected the C correction method, 
Fig2 shows the pre-corrected and post-corrected ASTER images 
(bands132 for RGB)of test site. To visually compare the two 
images same histogram stretch was applied to them and the 
histogram of C corrected image was matched to the 
pre-corrected one. As can be seen from Fig2, Fig2(a) had a lot 
of shadows, the terrain undulation and stereo was apparent 
across the scene(except the urban area), whereas Fig2(b) which 
was C corrected had less shadow and the terrain undulation was 
also inconspicuous. Fig2(b) was even more smooth than Fig2(b). 
therefore it showed that the terrain undulation impact in study 
site cou
a
 
The spectra profile along a random line(Fig3) across undulate 
area within test site showed that the spectrum variance of 
objects which were similar in spectra value but locate in both 
sunny side and opposite side due to the terrain undulation was 
diminished(Fig3(b)). So the C correction could also effectively 
reduce the phenomenon characterized by that same targets 
display vary
u
 
4
 
LSMM was applied to both pre-corrected and post-corrected 
ASTER data of study site and  two vegetation abundance 

and normalized difference vegetation index-NDVI or modified 
vegetation index-MVI have close correlation(Carlson et 
al,1997;Qi et al,2000;Zeng et al,2000 McDaniel and Haas,1982), 
the correlation coefficient could indicate the unmixing precision 
at a certain extent. In addition, our main objective is to 
investigate the impact on LSMM due to the topographic 
undulation while not to specifically evaluate the precision for 
unmixing the vegetation abundance, so the correlation 
regression method is alternatively feasible for characterizing the 
negative effect of terrain undulation in this study. 
     Normalized difference vegetation index a
vegetation index(MVI) or transformed vegetation index(TVI) 
maps were derived from pre-corrected ASTER image as 
follows:  
 
 

NIR red NIR redNDVI=( R -R )/( R -R )  
NIR red NIR red( ) ( R -R )/( R -R )+0.MVI TVI = 5

 

Where RNIR and Rred are the spectral reflectances in ASTER 

o apply regression analysis 5,000 sample points were selected 

orrelation coefficient (R)or square-R as a indicator index was 

17.6% and 18.6% in R  value for NDVI and MVI by 
minimizing or even removing terrain undulation effect using C 
correction method. On one hand, it proved that, the terrain 

           (8) 

 

near-infrared(band 4) and red(band 3)bands;  
 
T
randomly in four images including NDVI, MVI, vegetation 
abundances from pre-C corrected and pos-C corrected ASTER 
images. Sequentially the multi-regression analysis between 
vegetation abundances and vegetation indexes(NDVI and MVI) 
was employed and the results were displayed in Fig5. 
 
C
chosen to quantitate the unmixing precision indirectly. It should 
be noted that a high R2 value could indicate the good unmixing 
precision and also the effectiveness of C correction. As is 
shown in Fig5 the R2 between vegetation abundances and 
vegetation indexes followed by C correction is higher than that 
of pre-corrected ones. The unmixing precision was improved 

2

61



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

undulation could dramatically bias the reflectances of targets 
and further seriously attenuate the unmixing result for LSMM, 
and on the other hand, it also validate the effectiveness of C 
correction method on removing terrain undulation effect again. 
 

 
 
 
 

 
 

Figure 5 (a1),(a2) Relationships between vegetation abundances and NDVI for pre-C corrected and post-C corrected ASTER 
imagery. (b1),(b2) Relationships between vegetation abundances and MVI for pre-C corrected and post-C corrected ASTER imager . 
 

5. SUMMARIES AND CONCLUSIONS 
 

tion on 
LSMM with reference to unmixing vegetation abundances using 

Though we took vegetation abundance as a case study, it should 
be envisioned that the similar result for other endmember types 

echanism of terrain undulation 

e authors like to extend our appreciations to College of 
eographical Sciences ,Fujian Normal University, Fujian 

provincial depa logy for their 
foundation support. We also want to gratefully acknowledge all 

dams, J. B., Sabol, D. E., Kapos, V., Almeida, R., Roberts, D. 
., Smith, M.O., et al. (1995). Classification of multispectral 

images based on frac bers—Application to 

y

 

This paper has investigated the impact of terrain undula

LSMM. C correction was used to remove or minimize terrain 
effects of the original ASTER data and the result showed that 
the C method was reasonable and effective. The endmember 
selection procedures such as minimum noise fraction (MNF), 
pixel purity index(PPI) and n-dimensional visualization were 
implemented  respectively to pre-corrected and post-corrected 
ASTER data to determine the endmembers effectively. A full 
constrained least square LSMM was applied to the two data sets 
and the vegetation abundance images were sequentially 
derived .Multi-regression analysis between vegetation 
abundance and vegetation indexes which was employed to 
validate and estimate the terrain undulation impact on LSMM 
indicated that terrain undulation could constrain the application 
of LSMM, typically the unmixing precision was improved 
17.6% and 18.6% in R2 value for NDVI and MVI by 
minimizing or even removing terrain undulation effect using C 
correction method in our study. So specially effective removal 
or minimization of terrain impact was essential for LSMM 
applications in moderate or small-scale mountainous areas. The 
results not only proved the terrain undulation could dramatically 
bias the reflectances of targets and further seriously attenuate 
the unmixing result for LSMM  but also validate the 
effectiveness of C correction method on removing terrain 
undulation impact again. 

(water, barren soil, impervious area and so on )could be achieve 
because of the same impact m
and the identical unmixing procedure with LSMM. However 
further studies of different area ,different types of imagery and 
other endmembers are recommended with purpose to inspect the 
validation and applicability of our results and conclusions. In 
addition, to acquire specific unmixing precision the accurate 
and quantitative ground data should be collected. In fact, the 
atmospheric scattering and scales of the imagery can also 
behave negative impact on LSMM, to quantitatively evaluate 
the impacts is our further work in the future. 
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the past 30 years. Interestingly, some authors also found LSMM 
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2000; Settle, 1996). 
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materials spectral characteristics (Boardman, 1989),and 
followed by three assumption:(1) the spectra signals are linearly 
contributed by a finite number of land-cover classes 
(endmembers) within each pixel weighted by their cover 
percentage (Ichoku & Karnieli, 1996); (2) the endmembers in a 
pixel are homogeneous surfaces and spatially segregated 
without multiple scattering (Keshava & Mustard, 2002); and (3) 
the electromagnetic energy of neighboring pixels does not affect 
the spectral signal of the target pixel. Although nonlinear 
mixing effects due to the uncertainty caused by ,such as, 
atmospheric absorption and scattering, adjacent effect of pixel, 
have been considered in previous literature(Borel & Gerstl, 
1994; Ju et al., 2003;Pu et al., 2003) they are complicated and 
case-specific and not seriously deteriorate the unmixing 
results(Xin Miao et al,2006;Chabrillat et al.,2000). 
 
Researches on LSMM in previous literature mostly focused on 
the evaluation of linear hypothesis relating to
te
nevertheless, the environment conditions of study area which 
could sway the unmixing-accuracy such as atmosphere 
reflectance or scattering and terrain undulation are not studied. 
The terrain effects are very notable from the satellite imagery 

64

mailto:watixi@163.com.TEL:13459194134
mailto:watixi@163.com.TEL:13459194134
mailto:watixi@163.com.TEL:13459194134
mailto:watixi@163.com.TEL:13459194134


The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

captured on undulating earth surfaces., These terrain 
illumination effects have serious consequences for the 
application of quantitative methods, including classification of 
land cover types and linear spectral analysis. So the main 
objective of this paper is to quantitatively evaluate the accuracy 
uncertainty of LSMM affected by the terrain undulation with 
the hope that this study could offer new theory basis for LSMM 
applications in mountainous area and furthermore improve the 
unmixing accuracy of LSMM. To this end, via taking unmixing 
vegetation abundance as an example, we choose the ASTER 
data equipped with relatively broad spectral range, fine spatial 
resolution, a large number of bands, and concentrated our study 
on part of suburb in Fuzhou, China. The following section is 
described to introduce the test site and the ASTER data 
followed by ASTER data processing. Then the C terrain 
undulation correction was used and subsequently LSMM was 
applied to both original ASTER data and C terrain undulation 
corrected ASTER image covering test site. Finally a regression 
analysis between vegetation abundances and NDVI, MVI 
extracted from originally or terrain corrected  ASTER data 
using systematically sampling was implemented and the 
correlation coefficient as a indicator index was selected to 
quantitate the terrain undulate impact. 
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