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ABSTRACT:

In this paper, a 4D scale space representation is introduced aiming at denoising, smoothing and simplifying effectively airborne and
spaceborne hyperspectral imagery. Our approach is based on a novel morphological levelings’ vectorial formulation, which by integrat-
ing spatial and spectral information is able to produce elegantly simplified versions (scale spaces) of the initial hypercube. In addition,
their construction is constrained by vector-valued anisotropic diffused markers which still respect the special hyperspectral data prop-
erties. In contrast to earlier efforts, under such a morphological framework the simplified scale space hypercubes are not characterized
by spurious extrema or asymmetrical intensity shifts and their edges/contours are not displaced. Experimental results demonstrate the
potential of our approach, indicating that the proposed representation outperforms earlier ones in quantitative and qualitative evaluation.

1 INTRODUCTION AND STATE-OF-THE-ART

Imaging spectrometry [Goetz et al., 1985] and hyperspectral sen-
sors have experienced significant success in recent years. By
offering repetitive, consistent and comprehensive data with en-
hanced discrimination capabilities due to their high spectral res-
olution, they possess a great potential for geoscience and remote
sensing applications. Environmental monitoring, natural resource
exploration, land-use analysis, terrain categorization, military and
civil government applications for pervious/ impervious surface
mapping have been much eased, while further applications in
medicine, biology, pharmaceuticals, agriculture and archaeology
expand the user community [Landgrebe, 2003, Maathuis and van
Genderen, 2004,Schmidt and Skidmore, 2004,van der Meer, 2006,
Plaza et al., 2008]. Note that for all the above applications the
accuracy of the extracted information, through classification and
other object detection procedures, is of major importance.

It is worth mentioning, however, that the reported average classi-
fication accuracy of remote sensing imagery is about 73% [Wilkin-
son, 2003] and it has not changed significantly in recent years. In
addition, optimally reducing the dimensionality of hyperspectral
data is still an open problem [Plaza et al., 2008]. Band selection
techniques -which are not, usually, generic and may discard some
bands that contain valuable information- as well as feature extrac-
tion methods -which project and may blur, the data into a low-
dimensional subspace- are actually a trade-off between making
the problem simpler and losing on classification accuracy [Brun-
zell and Eriksson, 2000, Webb, 2002]. The assumptions on the
possible statistical interpretation/separation of terrain classes do
not, in the general case, hold when these methods are applied di-
rectly to the initial degraded and noisy hypercube and not to an
elegantly simplified version of it. Therefore, although the hyper-
spectral imaging market is rapidly increasing - soon with new,
lighter, less expensive, higher performing generations of sensors-
there still remain several challenges, regarding their multidimen-
sional data processing, that need to be addressed [Plaza et al.,
2008].

First of all, the natural variability of the material spectra, noise,
physical disturbances and degradation added by the transmission

media and the sensor system, reduce the separability of the dif-
ferent structures in hyperspectral imagery and diminish the ac-
curacy of subsequent segmentation and classification processes.
The increased significance of smaller spatial and spectral varia-
tions among pixels implies, also, that smaller amounts of noise
are now likely to have a bigger impact on the results extracted
from this kind of imagery. Even thought any denoising process
has a significant impact on the accuracy of the results, many stud-
ies do not use any strict optimizing criteria when selecting the ap-
propriate smoothing methods, thus, negatively affecting the out-
come of subsequent analysis [Vaiphasa, 2006].

The right balance has to be found, in order to minimize not only
the effect of noise but also the effect of the denoising proce-
dure which should, moreover, take into account that objects in
images appear in various scales and thus, information has to be
gathered from various image scales [Lindeberg, 1994, Paragios
et al., 2005]. Towards this end, Anisotropic Diffusion Filtering
(ADF) has been employed for hyperspectral imagery delivering
promising results in improving classification accuracy by reduc-
ing the spatial and spectral variability of images, while preserv-
ing the boundaries of the objects ( [Lennon et al., 2002, Duarte-
Carvajalino et al., 2007, Martin-Herrero, 2007] and there refer-
ences therein). However, such a diffusion (smoothing) scale space
approach, which only recently was fully adapted to the special
spatial/spectral properties of hyperspectral imagery [Martin-Herrero,
2007] may reduce the problems of ad hoc inspections or isotropic
filtering but does not eliminate them completely, since spurious
extrema and intensity shifts may still appear [Meyer and Mara-
gos, 2000, Karantzalos et al., 2007] (Figures 1 and 2). figure

Towards the same direction, other nonlinear scale-space represen-
tations, like those based on mathematical morphology, consider
the evolution of curves and surfaces as a function of their geom-
etry. Such morphological-based approaches have been, recently,
proposed for processing hyperspectral imagery (e.g. [Benedik-
tsson et al., 2005, Plaza et al., 2005]). However, conventional
multiscale morphological scale-spaces like dilations and erosions
(of increasing structure element size) displace objects boundaries
[Jackway and Deriche, 1996]. Furthermore, the more sophisti-
cated openings and closings by reconstruction treat image fore-
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Figure 1: Smoothing and simplifying hyperspectral imagery ( c©Norsk Elektro Optikk). First column: A 3D view of the initial hyper-
cube (top) and a zoom on two spectral bands i.e band number #33 (middle) and and band number #87 (bottom). Second and third
columns: the resulting hypercubes and the corresponding spectral bands after anisotropic diffusion filtering ADF (second column) and
after the proposed vectorial leveling AML (third). Contrary to ADF, which smoothed but created spurious extrema and intensity shifts,
AML simplified and stayed constantly closer to the initial hypercube’s intensity and structure.

ground (peaks) and background (valleys) in an asymmetrical man-
ner, causing spectral shifts [Meyer and Maragos, 2000,Karantza-
los et al., 2007]. Thus, they pass on these drawbacks to the suc-
ceeding classification and object detection procedures, harming
their outcome significantly. A recent solution for scalar images
(R2), came from the development of a more general and pow-
erful class of self-dual morphological filters, the Morphological
Levelings (MLs) [Meyer, 1998] which have been further stud-
ied and applied for image simplification and image segmentation
by [Meyer and Maragos, 2000, Meyer, 2004].

In this paper, we aim to overcome anisotropic diffusion draw-
backs and exploit all the properties that make MLs powerful.
Hence, we introduce a novel 4D (the 3D hypercube plus one non-
linear diffusion scale) morphological scale space representation
for denoising and simplifying hyperspectral imagery. The devel-
oped nonlinear scale space is based on the extension of the 2D
morphological levelings’ formulation to a multidimensional vec-
tor valued one. The novelty of our approach lies also, in the fact
that our formulation takes into account the following consider-
ations which are customized to hyperspectral data specificities,
both during levelings and markers construction. The proposed
vectorial scale space filtering does:

i) tackle the kind of noise that never forms a coherent structure
both in spatial and spectral directions,

ii) take into account the fact that signal continuity in spectrum
is, usually, more plausible than continuity in space, i.e the
assumption that the spectral vector is a good approximation
to the spectral signature of a particular pixel usually holds

iii) take into account the fact that object boundaries in the spa-
tial directions should be enhanced, smoothed and elegantly
simplified while their contours/edges must remain perfectly
spatially localized: no edge displacements, intensity shifts
or spurious extrema should occur.

Integrating spatial and spectral information while respecting the
aforementioned criteria, the developed scale space morphologi-
cal filtering was applied to a number of hyperspectral images and

its evaluation was carried out by both a qualitative and a quan-
titative assessment. The remainder of this paper is organized as
follows: Starting with a brief review on conventional 2D mor-
phological levelings in Section 2, a detailed description of the
introduced vectorial extension for hyperspectral imagery is given
in Section 3, along with a reference on the construction of the
anisotropic markers. In Section 4, experimental results together
with a discussion on the qualitative and quantitative evaluation
are presented. Finally, conclusions and perspectives for future
work are on Section 5. (Supplemental material can be found in
http://www.mas.ecp.fr/vision/Personnel/karank/Demos/4D). figure

2 MORPHOLOGICAL 2D LEVELINGS

Given an image f at domain (bounded) Ω ∈ R2 → R and
following the definitions from [Meyer, 2004, Karantzalos et al.,
2007], one can consider as fx and fy the values of a 2D func-
tion f at pixels x and y and then define the relations: fy < fx
(fy is lower than fx), fy ≥ fx (fy is greater or equal than fx)
and fy ≡ fx (the similarity between fx and fy , which are at
level). Based on these relations, the zones in an image without
inside contours (isophotes, contour lines with constant brightness
values) are called smooth/ flat zones. Being able to compare the
values of neighboring pixels, a general and powerful class of mor-
phological filters the levelling can be defined [Meyer, 1998]. MLs
are a particular class of images with fewer contours than a given
image f . A function g is a leveling of a function f if and only if

f ∧ δg ≤ g ≤ f ∨ εg (1)

where δ is an extensive operator (δg ≥ g) and ε an anti-extensive
one (εg ≤ g).

For the construction of MLs a class Inter(g, f) of marker func-
tions h is defined, which separates function g and the reference
function f . For the function h we have that h ∈ Inter(g, f) and
so: g ∧ f ≤ h ≤ g ∨ f . Algorithmically and with the use of h,
one can ’interpreter’ above equation and construct levelings with
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Figure 2: Simplifying hyperspectral imagery with the proposed scale space vectorial leveling (AML). First row: The initial spectral
band #100 (left) and three of its increasingly simplified versions (scales n=2, 3 and 4). Second row: Zoom on a crop of the images
above.

the following pseudo-code: in cases where {h < f}, replace the
values of h with f ∧ δh and in cases where {h > f}, replace the
values of h with f ∨ εh. The algorithm can be repeated until the
above equation has been satisfied everywhere. Its convergence
is certain, since the replacements on the values of h are point-
wise monotonic.This makes function g be flat on {g < f} and
{g > f} and the procedure continues until convergence.

Under this framework MLs form a general class of morphologi-
cal operators which can elegantly simplify images and possess a
number of desirable nonlinear scale space characteristics. Lev-
elings do satisfy the following properties [Meyer and Maragos,
2000, Karantzalos et al., 2007]: i) the invariance by spatial trans-
lation, ii) the isotropy, invariance by rotation, iii) the invariance
to a change of illumination, iv) the causality principle, v) the
maximum principle, excluding the extreme case where g is com-
pletely flat. In addition levelings: vi) do not produce new ex-
trema at larger scales, vii) enlarge smooth zones, viii) they, also,
create new smooth zones ix) are particularly robust (strong mor-
phological filters) and x) do not displace edges. The aforemen-
tioned properties have made them a very useful simplification
tool for a number of computer vision and remote sensing appli-
cations [Meyer and Maragos, 2000, Meyer, 2004, Paragios et al.,
2005, Karantzalos and Argialas, 2006].

3 MULTISCALE VECTORIAL LEVELINGS FOR THE
HYPERCUBE

Lets denote with I : Ω ⊂ Rd → RN a hyperspectral image
with a normalized hyperspectrum of N spectral channels. The
pseudo-scalar and autarkical vector levelings, that have been al-
ready proposed [Gomila and Meyer, 1999], are not suitable for
hyperspectral imagery since they do not account for the special
spatial/spectral specificities of hyperspectral data. In addition,
the first ones do not efficiently enlarge flat zones and the second
ones produce annoying visual artifacts due to their formulation
on color propagation [Gomila and Meyer, 1999].

Excluding atmospheric effects which are tackled during a specific
atmospheric correction stage, the dark or photon shot noise and
the readout noise, which appears as uncorrelated high-frequency
variations in the spatial and spectral space without forming a co-
herent structure, is what a filtering procedure should be able to
address [Martin-Herrero, 2007]. However, unconstrained spatial
smoothing is not desirable and in addition, spectral resolution and
band adjacency are, usually, high enough to assume that the spec-
tral vector is a good approximation to the spectral signature of
the pixel, i.e the mixture of the spectral signatures of the objects
within the pixel plus atmospheric, scatter and radiometric effects.
Last but not least, in the spatial directions all the aforementioned
in the previous section properties of the 2D levelings must be re-
tained. To sum up a sophisticated vectorial leveling formulation

should retain all its 2D properties for the spatial directions and
at the same time respect gross variations among adjacent spectral
signatures and only suppress the broad spectral variations (spike-
like features).

Towards this end, the levelings construction mechanism was kept
the same in order to carry out the same effect on the spatial di-
rections and reformulated in a way to include in the inequalities a
comparison with the adjacent spectral signatures. Thus, the equa-
tion for the vectorial leveling takes, now, the following form:

f ∧ (δgs ∨ δ′gc) ≤ g ≤ f ∨ (εgs ∧ ε′gc) (2)

where δgs denotes an extensive marker in the spatial axis and δ′gc
an extensive marker in the spectral one (the anti-extensive opera-
tors εg are equally defined). The spatial gs marker acts as in the
2D case ensuring an elegant simplification in the spatial neigh-
borhood of a pixel and the spectral gc accounts for the spike-like
features by enforcing its relevant operators (δ′ and ε′) to have a
much broader effect. Under this framework and employing al-
ways a marker function h for levelings’ construction the process
is decomposed and the spectral and spatial spaces are treated dif-
ferently according to the posed constrains. Rephrasing Equation
(2) and in a unique parallel step we have that:

g = Λ(f, h) =
(
f ∧ (δhs ∨ δ′hc)

)
∨ (εhs ∧ ε′hc) (3)

Hence, the proposed vectorial levelings can be considered as trans-
formations Λ(f, h) where a marker h is transformed to a func-
tion g , which is a leveling of the reference signal f . Where
{(δhs ∨ δ′hc) < f}, h is increased as little as possible until a
flat zone is created or function g reaches the reference function f
and where {(εhs ∧ ε′hc) > f}, h is decreased as little as possi-
ble until a flat zone is created or function g reaches the reference
function f . This process simplifies the hypercube by enlarging
and by creating new flat zones and this procedure continues until
convergence.

3.1 Scale Space Hypercubes

Hyperspectral data can be viewed like any video data, where the
wavelength corresponds to time or like MRI volumes in medical
imaging, where wavelength corresponds to another spatial axis.
Instead of defining the stack of a hyperspectral image as I : Ω ⊂
Rd → RN , where N is the number of spectral channels and
I = (I1(x, y), ..., IN (x, y)) ∈ RN , a hypercube can be defined,
also, as a 3D function I : Ω ⊂ R3 → R, where I(x, y, z) =
Iz(x, y)).

Following this notation, multiscale levelings can be constructed
when the initial (reference) hypercube I is associated with a se-
ries of marker functions {h1, h2, ..., hn} -all h are increasingly
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Figure 3: Spatial simplification: Comparing the filtering result of
ADF, ML (channel by channel process) and the proposed vecto-
rial AML. Two line plots with the cross-sections along the y-axis
of the different filters are shown for bands #49 (top) and #64
(down). The proposed AML did simplify the initial image by en-
larging and creating new flat zones and at the same time followed
more constantly and closely original image’s intensity values and
variation. AML did retain all its elegant 2D properties.

smoother hypercubes in R3. The constructed levelings are re-
spectively

g1 = I, g2 = Λ(g1, h1), g3 = Λ(g2, h2),

g4 = Λ(g3, h3) , ..., gn = Λ(gn−1, hn−1)
(4)

A series gn of simpler and simpler hypercubes, with fewer and
fewer smooth zones are produced forming a 4D scale space with
g : Ω ⊂ R4 and g(x, y, z, n) = gn(x, y, z). Similar to the
2D case the introduced, here, vectorial morphological levelings
AMLs can be associated to an arbitrary or an alternating family
of marker functions. Examples with openings, closings, alter-
nate sequential filters and isotropic and anisotropic markers can
be found in the literature for scalar images [Meyer, 1998, Meyer
and Maragos, 2000, Meyer, 2004, Karantzalos et al., 2007]. For
specific tasks one may take advantage of the possible prior knowl-
edge for scene’s content and design accordingly the family of
markers.

3.2 Anisotropic Diffused Markers

For the construction of the simplified hypercubes anisotropic dif-
fused markers were chosen, since they have proven to be effec-
tive for scalar images [Karantzalos et al., 2007]. In addition,
since levelings are highly constrained by the type of the marker
used [Meyer and Maragos, 2000], only those markers who are
fully suitable for hyperspectral imagery were appropriate for our
case. The recent formulations of [Martin-Herrero, 2007] provide
a suitable diffusion framework which respects the special char-
acteristics of hyperspectral data by separating the elegant vector-

Figure 4: Spectral simplification: Comparing the filtering result
of ADF, ML and AML. Two line plots with the cross-sections
along the spectral axis of the different filtered hypercubes are
shown. The proposed AML did surpassed broad spectral varia-
tions (spike-like features) among adjacent spectral signatures and
at the same time followed more constantly the initial intensity.

valued diffusion approach of [Tschumperle and Deriche, 2005]
in the spatial and spectral space. For a hypercube I : Ω ⊂ R3

the anisotropic diffusion process is expressed by the following
equation:

ϑI
ϑt

= trace(TH) (5)

with H and T the 3x3 Hessian and diffusion tensor matrices, re-
spectively. The tensor separates the diffusion in the spatial and
spectral directions while suitable edge-stoping functions ri con-
trol the diffusion:

T = rxθ+θ
T
+ + ryθ−θ

T
− + rzzzT (6)

with θ the eigenvectors of a 2x2 metric tensor D which depends
on the spatial derivatives:

D = Gσ ∗
N∑
i

∇Ii∇ITi (7)

where Gσ is a gaussian smoothing for regularizing the spatial 2D
derivatives of ∇I at every channel N. In [Martin-Herrero, 2007]
the edge stoping functions ri, which act differently in the spa-
tial and spectral directions, have been defined in such a way so
as to allow all possible adjustments regarding their regularization
effect. One should tune all the coefficients according to image
characteristics and the filtering purpose. For a scale space repre-
sentation, however, where

I : Ω ⊂ R4, I(x, y, z, n) = In(x, y, z) (8)

(n is the scale of diffusion) one may avoid tuning the vector
edge strength ri(v) -with v =

√
trace(D)- and rely on the
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Figure 5: Smoothing and simplifying hyperspectral imagery
( c©Norsk Elektro Optikk). First column: A 3D view of the ini-
tial hypercube (top) and a zoom on the band number #94 (mid-
dle). Second and third column: the resulting hypercubes and the
corresponding bands after applying the ADF (second column)
and the proposed AML (third column). Contrary to ADF, which
smoothed without preserving image flat zones, AML simplified
and stayed constantly close to the initial hypercube intensity val-
ues and structure.

adaptive time step ∆t = ∆Imax/max(|trace(TH)|) or on an-
other selected one. In cases where just a single simplified hy-
percube is needed, the coefficients can be customized accord-
ingly. The proposed, thus, vectorial leveling AML takes its final
form when in Equation (4) the family of markers hn are derived
from the anisotropic diffused markers In of Equation (8). Such
anisotropic markers, which do respect hyperspectral data speci-
ficities, can naturally ameliorate the simplification process, with-
out, in addition, demanding a search for selecting the appropriate
structure element size and type, as the classical morphological
operators do.

4 EXPERIMENTAL RESULTS - EVALUATION

The developed vectorial Anisotropic Morphological Leveling AML
was applied to a number of hyperspectral images and its evalua-
tion was carried out by both a qualitative and a quantitative as-
sessment. Datasets from the HySpex VNIR-1600 airborne sensor
( c©Norsk Elektro Optikk A/S) with 160 channels (400-1000nm),
from the CASI-1500 airborne sensor ( c©ITRES) with 36 chan-
nels (380-1050nm) and from EOS-1 Hyperion ( c©USGS) space-
borne sensor with 220 channels were available. Throughout the
evaluation procedure the compared ADF was the same with the
one that was used for the construction of the AML and each scale
n was derived after three iterations t. Both were also compared
with the classical ML after a standard channel by channel process
to the resulting ADF hypercube. For the quantitative evaluation
apart from the standard RMSE and NMSE measures -which give
a quantitative sense for the extent of variation between the inten-
sity values of the compared images- the recently proposed com-
plementary quality measure of SSIM [Wang et al., 2004] was,
also, employed because it is able to compare effectively local
patterns of pixel intensities under a perceived visual quality. The
lower RMSE and NMSE and the bigger SSIM values designate
the better filtering result.

Table 1: Quantitative Evaluation

Test Data Type of
Filter

Quantitative Measures
RMSE NMSE SSIM

Figure 1
Hypercube

ADF 0.012 0.009 0.996
ML 0.009 0.004 0.998

AML 0.006 0.002 0.999

Figure 1
Band #33

ADF 0.097 0.156 0.985
ML 0.035 0.020 0.996

AML 0.034 0.018 0.998

Figure 1
Band #87

ADF 0.068 0.021 0.944
ML 0.055 0.013 0.974

AML 0.049 0.011 0.974

Figure 2
Band #100

ADF 0.147 0.093 0.982
ML 0.049 0.010 0.997

AML 0.041 0.007 0.998

Figure 5
Hypercube

ADF 0.009 0.004 0.998
ML 0.004 0.001 0.999

AML 0.003 0.001 1.000

Figure 5
Band #94

ADF 0.052 0.018 0.973
ML 0.025 0.005 0.992

AML 0.020 0.003 0.995

Noisy
Hypercube

ADF 0.013 0.012 0.996
ML 0.009 0.007 0.997

AML 0.008 0.004 0.998

In Figure 1, 3D views of the initial hypercube and the resulting
ones from the ADF and the AML are presented, together with
two corresponding bands #33 and #87 (filtering scale n=3).
The ADF smoothed strongly the data and created some intensity
shifts. In contrast the AML simplified the data but kept a closer
relation with the initial hypercube intensity values. This can be
more clearly verified by a close look at Figures 3 and 4, where
cross sections along the spatial y-axis and the spectral axis are
presented, respectively. One can observe that even thought all the
compared filters did not displace edges, the AML almost every-
where stayed closer to the initial hypercube. AML simplified the
image in the spatial directions by enlarging or creating new flat
zones (levelled regions with constant intensity values), retaining
all its 2D scale space properties. In the spectral direction it ac-
counted for large intensity variations (spike-like features) and at
the same time stayed close to the initial hypercube values. The
above observations can be further confirmed by the performed
quantitative evaluation (Table 1). In all cases (Figure 1), the AML
resulted to the lower RMSE and NMSE values and to the larger
structural similarity with the original image (SSIM).

In Figure 2, the initial and three of the resulting AML scale space
images are presented (scales n=2, 3 and 4). The increasingly
simplified versions of the original spatial image structure can be
observed. The quantitative comparison between AML’s result (at
scale n=4) with the corresponding ML and ADF (Table 1), indi-
cate that the AML scored better in all measures. Furthermore and
evaluating the compared filtering techniques in another dataset
(shown in Figure 5), approximately the same conclusions were
derived. In Figure 5, 3D views of the initial hypercube and the
ones resulting from the ADF and the AML are shown, together
with the corresponding band #94. By comparing qualitatively,
all filtering results in the same scale (n=6), it can be observed
that the difference between diffusing (smoothing with ADF) and
simplifying (AML) adjacent intensity variations, is that a more el-
egantly enhanced version of the original image is obtained from
the AML. Both methods respect image edges but the proposed
AML enforces the creation of flat regions instead of diffusing
inside them. This process obliges, also, AML to follow more
constantly the original hypercube’s intensity. The above obser-
vations can be confirmed by the quantitative measures in Table
1 which indicate that the AML scored better in all measures,
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in terms of keeping the extent of intensity variation (RMSE and
NMSE) small and the structural similarity (SSIM) with the refer-
ence hypercube high. Such elegantly simplified data can be used
instead of the original noisy ones, improving the performance of
the succeeding band selection, feature extraction and classifica-
tion procedures, especially the unsupervised ones. The AML,
naturally, provides a simpler space for statistical modeling and
interpretation, by preserving distinguishable data features while
reducing spatial and spectral intensity variation.

Moreover, the compared filtering techniques were applied in re-
moving noise from an artificially contaminated hypercube. One
percent of the original hypercube’s pixels were contaminated with
uncorrelated noise and then ADF, ML and AML of scale n=6
were applied. The quantitative measures when comparing results
with the original hypercube are presented in Table 1. The devel-
oped AML scores better in all measures approximating success-
fully the original hypercube’s intensity and structure. Last but not
least, the AML was tested against watershed’s over-segmentation
problem. In all performed experiments, a reduction of over a 10%
was achieved to the number of the output segments. AML man-
aged to decrease the heterogeneity of the initial image (both in
spectral and spatial directions) by merging pixels which belonged
to the same object/class, impelling the sensitive watershed trans-
formation to result in fewer output segments.

5 CONCLUSIONS
We have introduced a novel morphological scale space repre-
sentation for denoising and simplifying hyperspectral data. Ex-
perimental results and performed quantitative evaluation demon-
strate that the developed AML can enlarge and create new flat
zones without displacing image contours and can surpass spec-
tral spike-like features outperforming anisotropic diffusion filter-
ing and standard MLs. The algorithm is relative fast and with-
out an optimized coding, can approximately process a hyper-
cube of 200x350 pixels with 160 channels in less than a minute
(for every scale n) in an ordinary iPentiumM 2GHz,1GB RAM.
For real-time applications its implementation on a parallel sys-
tem is straightforward and furthermore, the algorithm can be ad-
justed and do not process the thermal infrared bands, other heav-
ily noised or selected ones. The suitable for hyperspectral data
morphological framework, the resulting, in all our experiments,
elegant simplification and the adequate algorithm’s performance
encourage future research. Object-oriented hyperspectral image
analysis, where the multiscale segmentation and classification is
constrained by the developed AML is currently under investiga-
tion.
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