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ABSTRACT: 
 
Timely and accurate identification of tree species by spectral methods is crucial for forest and urban ecological management. It has 
been proved that traditional methods and data cannot meet such requirements.  In this study, a total of 394 reflectance spectra 
(between 350 and 2500 nm) from foliage branches or canopy of 11 important urban forest broadleaf species were measured in the 
City of Tampa, Florida, U.S. with a spectrometer. The 11 species include American Elm (Ulmus americana), Bluejack Oak (Q. 
incana), Crape Myrtle (Lagerstroemia indica), Laurel Oak (Q. laurifolia), Live Oak (Q. virginiana), Southern Magnolia (Magnolia 
grandiflora), Persimmon (Diospyros virginiana), Red Maple (Acer rubrum), Sand Live Oak (Q. geminata), American Sycamore 
(Platanus occidentalis), and Turkey Oak (Q. laevis). A total of 46 spectral variables, including normalized spectra, derivative spectra, 
spectral vegetation indices, spectral position variables, and spectral absorption features were extracted and analyzed from the in situ 
hyperspectral measurements. Two classification algorithms were used to identify the 11 broadleaf species: a non-linear artificial 
neural network (ANN) and a linear discriminant analysis (LDA). An ANOVA analysis indicates that the 30 selected spectral 
variables are effective to differentiate the 11 species.  The 30 selected spectral variables account for water absorption features at 970 
nm, 1200, and 1750 nm and reflect characteristics of pigments in tree leaves, especially variability of chlorophyll content in leaves.  
The experimental results indicate that both classification algorithms (ANN and LDA) have produced acceptable accuracies (OAA 
from 86.3 % to 87.8%, Kappa from 0.83 to 0.87) and have a similar performance for classifying the 11 broadleaf species with input 
of the 30 selected spectral variables.  The preliminary results of identifying the 11 species with the in situ hyperspectral data imply 
that current remote-sensing techniques are still difficult but possible to identify similar species to such 11 broadleaf species with an 
acceptable accuracy.  
 
 

1. INTRODUCTION 
 
The need for detailed forest parameters (species, size, and 
number of trees), biophysical properties (canopy density and 
leaf area index (LAI)), and canopy chemical composition over 
large land holdings in the U.S., has increased markedly in the 
last decade (Gong et al., 1999).  Mapping forest area or tree 
species identification is usually based on aerial photo 
interpretation and moderate-resolution satellite image 
classification.  Aerial photo interpretation is dependent on the 
experience of photo interpreters and some experiments indicate 
large discrepancies among photo interpretation by different 
interpreters (Biging et al., 1991; Gong and Chen, 1992).   It is 
also difficult to develop detailed accurate individual tree crowns 
and tree canopy maps because of the limited spatial resolution 
of existing satellite imagery such as SPOT HRV, and Landsat 
TM/ETM+ data (Congalton et al., 1991; Brockhaus and 
Khorram, 1992; Franklin, 1994; Carreiras et al., 2006).  
 
During the last two decades, researchers have used high spatial 
resolution satellite sensors (< 5 m resolution, such as IKONOS 
and QuickBird) and hyperspectral data [such as Airborne 
Visible Infrared Imaging Spectrometer (AVIRIS)] to extract 
detailed forest parameters such as tree species and mapping 
forest canopy (e.g., Wang et al., 2004; Xiao et al., 2004; 
Buddenbaum et al., 2005; Johansen and Phinn, 2006).  The 
preliminarily results of evaluating capabilities of those high 
resolution data in identifying tree species and mapping tree 
canopy indicate that the accuracy is not desirable (Asner et al., 
2002; Carleer and Wolff, 2004; Johansen and Phinn, 2006).  In 

mapping urban forest species with hyperspectral image data 
AVIRIS, Xiao et al. (2004) reported a relatively low overall 
accuracy (OAA=70%) for identifying 16 tree species with 
AVIRIS data although they successfully discriminated between 
three forest types with OAA=94%.  Classifying coniferous tree 
species with HyMap using geostatistical methods, the 
classification of accuracy (Kappa) of the tree species was only 
0.74, a result comparable to that obtained with stem density 
information derived from high spatial resolution imagery 
(Buddenbaum et al., 2005).  Therefore, it is still necessary to 
conduct further research in recognizing tree species and 
mapping tree canopy using either high spatial or high spectral 
resolution remote-sensing data, including in situ hyperspectral 
measurements (e.g., Gong et al., 1997; Cochrane, 2000). 
 
In this study, further evaluation of the capabilities of in situ 
hyperspectral data in recognizing 11 broadleaf species in an 
urban environment was conducted with in situ hyperspectral 
measurements, collected with an ASD spectrometer 
(FieldSpec®3, Analytical Spectral Devices, Inc., U.S.).  
Therefore, the objectives of this analysis consist of (1) 
examining the analysis capability of hyperspectral data for 
identifying major broadleaf tree species in the City of Tampa, 
Florida, (2) evaluating effectiveness of spectral features 
extracted from the in situ hyperspectral data, and (3) comparing 
the performance of the artificial neural network (ANN) and 
linear discriminant analysis (LDA) techniques in identifying 
broadleaf species. 
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2. STUDY SITE AND HYPERSPECTRAL  
DATA COLLECTION 

 
2.1 Study Site 
 
The City of Tampa was selected as study area.  It is the largest 
city on the west coast of Florida consisting of approximately 
285 sq. km.  The population is increasing and is currently 
estimated at approximately 335,000 people (www.tampagov.net 
accessed on Nov. 26, 2007).  The city is located at 
approximately 28° N and 82° W (Figure 1).  Historically, the 
natural plant communities of the Tampa Bay region included 
pine flatwoods, cypress domes, hardwood hammocks, high pine 
forests, freshwater marshes, and mangrove forests. Based on the 
City of Tampa Urban Ecological Analysis (Campbell and 
Landry, 1999), important, dominant urban tree species include 
American Elm (Ulmus americana), Bluejack Oak (Q. incana), 
Crape Myrtle (Lagerstroemia indica), Laurel Oak (Q. 
laurifolia), Live Oak (Q. virginiana), Southern Magnolia 
(Magnolia grandiflora), Persimmon (Diospyros virginiana), 
Red Maple (Acer rubrum), Sand Live Oak (Q. geminata), 
American Sycamore (Platanus occidentalis), Turkey Oak (Q. 
laevis), Slash Pine (Pinus elliottii), and Longleaf Pine (Pinus 
palustris). Other dominant tree species within the City of 
Tampa include Cabbage Palm (Sabal palmetto), Queen Palm 
(Syagrus romanzoffiana), Citrus (Citrus spp.), Goldenrain Tree 
(Koelreuteria paniculata), Bottlebrush (Callistemon viminale), 
and Water Oak (Q. nigra), etc.  In this analysis, a total of 11 
broadleaf species (Table 1) were selected for testing the 
capability of in situ hyperspectral data for discriminating 
between species.  Note that shorthand abbreviations for tree 
species discussed throughout this paper can be found in Table 1 
in parentheses after the common name of the tree species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A location map of the study area 
 
 
2.2 In Situ Hyperspectral Data Collection 
 
A full-range Analytical Spectral Device (ASD) (FieldSpec®3, 
Analytical Spectral Devices, Inc., U.S.) was used to collect 
spectral reflectance measurements from the 11 broadleaf tree 
species in the city area, which are a subset of urban forest 
species within the Tampa Bay area.  The ASD instrument 
consists of three separate spectrometers and covers a spectral 
range of 350 nm to 2500 nm.  
 
 
 

Tree species Number of trees Train samples Test samples Total
American Elm (Elm) 25 22 12 34
Bluejack Oak (Blue) 20 17 8 25
Crape Myrtle (Crap) 20 27 13 40
Laurel Oak (Laur) 31 24 13 37
Live Oak (Live) 26 24 11 35
Southern Magnolia (Magn) 20 30 16 46
Persimmon (Pers) 29 22 11 33
Red Maple (Mapl) 27 24 12 36
Sand Live Oak (Sand) 23 25 12 37
American Sycamore (Syca) 16 25 12 37
Turkey Oak (Turk) 28 22 12 34
Total 265 262 132 394  
 

Table 1. Spectral measurements taken from 11 broadleaf 
species. 

 
In the field, at least 20 trees of each species (except Syca) were 
measured to account for spectral variation and spatial 
distribution. The spectral measurements were collected from 
top, middle and low foliage branches from the crowns of 
individual species.  Tree heights lower than 7 m for most 
sampled trees were generally selected because of the logistical 
difficulties with measuring spectra from the top of tall trees.  A 
ladder with an effective height of 5 m was used for collecting 
spectral measurements.  To ensure that relatively pure spectra 
from individual trees of difference species were collected, the 
data acquisition was executed with a careful selection of view 
area from tree foliage branches to avoid or lessen the effect of 
background on target spectra. 0ne to three spectra were 
collected from individual trees. Because of the difficulty in 
separating a shadow/shaded area from a sunlit area from a tree 
crown, only fully sunlit areas were measured.  Each spectral 
measurement was repeated ten times to obtain reliable mean 
and variance estimates.  In this manner, a total of 394 spectral 
measurements were collected from the different foliage 
branches of the 11 broadleaf species in the City of Tampa 
(Table 1).  

The City of Tampa, FLThe City of Tampa, FLThe City of Tampa, FL

 
 

3. ANALYSIS METHODS 
 
3.1 Preprocessing of Spectral Measurements 
 
The following preprocessing of spectral measurement was 
performed. First, spectral curves were truncated below 400 nm 
and above 2400 nm because the measurements were extremely 
noisy outside of this range. Approximately 2000 bands remain, 
each with a width of about 1 nm. Next, curve smoothing was 
used with a simple average over blocks of five neighboring 
bands. The spectral curves for constant area were then 
normalized by dividing the mean reflectance for that curve. 
That is, a spectral reflectance curve  was replaced 
with

iρ

)1/(
1

∑
=

k

i
ii k

ρρ , where, k represents the total bands of the 

spectral reflectance.  The benefit of such normalization is the 
suppression of illumination differences. Figure 2(a) shows a 
plot of unnormalized curves versus band wavelength for two 
observations of each of the five oak species (Blue, Laur, Live, 
Sand and Turk). Figure 2(b) shows the same curves of Figure 
2(a) after normalization. Notice that the clearer separation 
between the species over a wide range of wavelength in Figure 
2(b). Figure 2(c) shows a plot of normalized curves versus band 
wavelength for all the 11 species (Elm through Turk). 
 
3.2 Extraction of Spectral Variables  
 
Forty-six spectral variables (Table 2), including normalized 
spectra, derivative spectra, spectral vegetation indices, spectral 
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position variables, and spectral absorption features were 
extracted from the in situ hyperspectral measurements and 
analyzed for classifying the 11 species.  

3.3 ANOVA 
 
To select a subset of spectral variables from the total 46 spectral 
variables for running ANN and LAD for species recognition, an 
one-way ANOVA analysis was performed.  This was done 
based on greater spectral separability between any two species 
(paired-species) of the 11 species, using the SPSS statistical 
package (www.spss.com, 2007). For any paired-species from 
the 11 species, all spectral measurements for the paired-species 
were used to conduct the ANOVA analysis across the 46 
spectral variables (Table 2). Then based on the degree of 
spectral separability of each spectral variable between the 
paired-species, a statistical frequency was calculated at 
probability levels p≤0.01 and p≤0.05 for each spectral variable.  
For this analysis, a maximum frequency at either p≤0.01 or 
p≤0.05 is 55 (because of ). 55211 =C
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3.4 Species Recognition Schemes 
 
Two supervised classification schemes were employed for the 
broadleaf tree classification: non-linear artificial neural network 
(ANN) and linear discriminant analysis (LDA). In this analysis, 
a feed-forward ANN algorithm was used for classifying the 11 
species.  An LDA classifier was also used to classify the 11 tree 
species with inputs of the same subset of spectral variables as 
for ANN to compare with the classified results by ANN.  The 
procedure DISCRIM in the SAS system (SAS Institute, 1991) 
was used.   
 
Two sets of samples were allocated - training and test samples, 
from a total of 394 samples collected from 11 tree species.  The 
training samples were used for training ANN and LDA while 
test samples are used to evaluate the tree species recognition 
accuracies, generated with ANN and LDA. About 2/3 of the 
samples were used for training and about 1/3 of the samples 
were used as test samples.  This procedure was repeated three 
times (runs) (see Table 1) to obtain three different sets of test 
samples (but training sets with a part overlaid between any two 
sets).  Finally, an overall accuracy (OAA) and Kappa index are 
calculated from a confusion matrix produced with the test 
samples using ANN and LDA. 
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4.  RESULTS AND ANALYSIS 
 
4.1 ANOVA 
 
After the in situ hyperspectral data were preprocessed, 
including smoothing and normalization, according to the 
definitions for spectral variables listed in Table 2, the 46 
spectral variables were extracted.  An one-way ANOVA 
analysis was first performed for all the extracted spectral 
variables from which a subset of spectral variables was selected.  
If the frequency threshold was set to greater than the half of 
maximum possible frequency of 55, a total of 30 spectral 
variables were selected. Figure 2. Figure 2(a) shows a plot of unnormalized curves of 

five oak species versus band wavelength for two observations 
of each of the five oak species (Blue, Laur, Live, Sand and 
Turk). Figure 2(b) shows the same curves of Figure 2(a) after 
normalization. Figure 2(c) shows a plot of normalized curves 
versus band wavelength for all the 11 species (Elm through 
Turk). 

 
Among the 30 selected spectral variables, all 10 VIs are 
included, which imply that those VIs make a substantial 
contribution to separating most of the 11 tree species.  The 30 
selected spectral variables can be further classified into two 
groups.  The first group of spectral variables mainly describes 
the variation of foliage water content among the difference 
species and its spectral variables consist of WI, DSWI, 
Ratio1200, E-1D, NDWI, DEP-975, AREA-975, H-WP, PRI, 
DEP-1200, AREA-1200, Ratio975, and WID-1200.  The  
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Spectral variables Characteristic of the plant related with the 
variable/index

Definition Described by

A-1D, B-1D, C-1D, D-1D, E-1D, 
F-1D,G-1D, H-1D, I-1D,J-1D, 
maximum 1st derivative spectra

Pigments absorption in visible region and 
water, cellulose, starch and lignin absorption 
in NIR and SWIR.

Maximum 1st derivative spectra of 10 'slopes' : 
blue edge , yellow edge and red edge and other 
7 'slopesi in NIR and SWIR regions

Gong et al., 2002                     
Pu et al., 2004

A-WP, B-WP, C-WP, D-WP, E-
WP, F-WP, G-WP, H-WP, I-
WP,J-WP, spectral position 
variables corresponding "1Ds"

Pigments absorption in visible region and 
water, cellulose, starch and lignin absorption 
in NIR and SWIR.

Corresponding spectral positions of "1Ds" of 10 
'slopes' : blue edge , yellow edge and red edge 
and other 7 'slopesi in NIR and SWIR regions

Gong et al., 2002                     
Pu et al., 2004

R550 Chlorophyll content Reflectance at 550 nm Thomas and Gausman, 1977

R680 Chlorophyll content Reflectance at 680 nm Thomas and Gausman, 1977
WI, Water Index Water status R900/R970 Peñuelas et al., 1997
NDVI, Normalized Difference 
Vegetation Index

Photosynthetic area; cell structure multi-
reflected spectra

(RNIR-RR)/(RNIR+RR)  Rouse et al., 1973 

SR, Simple Ratio Same as NDVI RNIR/RR Jordan, 1969                            
G t l 2003PRI, Photochemical Reflectance 

Index
Water stress (R531-R570)/(R531+R570) Thenot et al., 2002

SIPI, Structural Independent 
Pigment Index

Carotenoids: chlorophyll a ratio (R445-R800)/(R680-R800) Peñuelas and Filella, 1998

NPCI, Normalized total Pigment 
to Chlorophyll Index

Senescence (R680-R430)/(R680+R430) Peñuelas et al., 1994

NPQI, Normalized 
Phaeophytinization Index

Senescence (R415-R435)/(R435+R435) Barnes et al., 1992          
Peñuelas et al., 1995

LCI, Leaf Chlorophyll Index Chlorophyll content (R850-R710)/(R850+R680) Datt , 1999

NDWI, ND Water Index Water status (R860-R1240)/(R860+R1240) Datt et al., 2003                        
Gao, 1996

DSWI, Disease water stress 
index

Water status (R802+R547)/(R1657+R682) Galvão et al., 2005

RATIO975 3-band ratio at 975 
nm

Water status 2*R960-990/( R920-940+ R1090-1110) Pu et al., 2003

RATIO1200 3-band ratio at 1200 
nm

Water status 2*R1180-1220/( R1090-1110+ R1265-1285) Pu et al., 2003

WP-975: wavelength position at 
975 nm

Water absorption feature at 975 nm See reference for the defiinition of wavelength 
position at 975 nm

Pu et al., 2003

DEP-975 absorption depth at 
975 nm

Water absorption feature at 975 nm See reference for the defiinition of absorption 
depth at 975 nm

Pu et al., 2003

WID-975 absorption width at 
975 nm

Water absorption feature at 975 nm See reference for the defiinition of absorption 
width at 975 nm

Pu et al., 2003

AREA-975 absorption area at 
975 nm

Water absorption feature at 975 nm See reference for the defiinition of absorption 
area at 975 nm

Pu et al., 2003

WP-1200: wavelength position 
at 1200 nm

Water absorption feature at 1200 nm See reference for the defiinition of wavelength 
position at 1200 nm

Pu et al., 2003

DEP-1200 absorption depth at 
1200 nm

Water absorption feature at 1200 nm See reference for the defiinition of absorption 
depth at 1200 nm

Pu et al., 2003

WID-1200 absorption width at 
1200 nm

Water absorption feature at 1200 nm See reference for the defiinition of absorption 
width at 1200 nm

Pu et al., 2003

AREA-1200 absorption area at 
1200 nm

Water absorption feature at 1200 nm See reference for the defiinition of absorption 
area at 1200 nm

Pu et al., 2003

WP-1750: wavelength position 
at 1750 nm

Water absorption feature at 1750 nm See reference for the defiinition of wavelength 
position at 1750 nm

Tian et al., 2001                       
Pu et al., 2003

DEP-1750 absorption depth at 
1750 nm

Water absorption feature at 1750 nm See reference for the defiinition of absorption 
depth at 1750 nm

Tian et al., 2001                       
Pu et al., 2003

WID-1750 absorption width at 
1750 nm

Water absorption feature at 1750 nm See reference for the defiinition of absorption 
width at 1750 nm

Tian et al., 2001                       
Pu et al., 2003

AREA-1750 absorption area at 
1750 nm

Water absorption feature at 1750 nm See reference for the defiinition of absorption 
area at 1750 nm

Tian et al., 2001                       
Pu et al., 2003  

 
Table 2. Summary of 46 spectral variables extracted from the in situ hyperspectral measurements for this analysis.

 
second group of spectral variables relates the characteristics 
and pigment status (primarily chlorophyll) of leaves among the 
difference species and its spectral variables consist of  C-1D, 
A-1D, B-1D, R550, A-WP, SIPI, NPQI, LCI, B-WP, SR, J-1D, 
NPCI C-WP, R680, H-1D, and F-1D.  
 
4.2 Species Recognition 
 
To train and test the three-layer ANN structure for classifying 
the 11 species (including five oak species), the input of 30 
selected spectral variables was first normalized to the range of 
[0, 1].  The output layer had 11 nodes corresponding 11 species 
(or 5 nodes for 5 oak species).  To find a better ANN structure, 
various combinations of learning rate (η), momentum 

coefficient (α) and number of nodes in a hidden layer (h1) were 
tested using the first training/test data set (Table 1). In 
considering relatively small variation of OAA values with all 
testing nodes (h1: 10 – 40) and convenience to design the ANN 
networks, for identifying the 11 species, all ANNs use h1 = 25 
or 30, η = 0.8 or 0.7, and α = 0.1 0r 0.2 while for identifying 5 
oak species, all ANNs use h1 = 16 or 20,  η = 0.8 or 0.7, α = 
0.1 or 0.2. 
 
For classifying both 11 species and a subset of 5 oak species, 
the first row of Table 3 shows classification results calculated 
from three sets of test samples by ANN. From the table, we can 
see that the classification accuracies (OAA) of averaging three 
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runs of test samples are around 88% and Kappa values of 0. 87 
and 0.84, respectively. The species recognition accuracies 
produced by ANN are acceptable when considering the 
spectral similarity among most of the 11 species (Figure 2).   
 
With exactly the same inputs of 30 selected spectral variables 
as for ANN for both 11 species and 5 oak species recognition, 
it is apparent that all accuracy indices produced by LDA are 
very close to those by ANN, including both OAA and Kappa 
values.  The recognition accuracies generated by ANN and 
LDA are not statistically different (Z<0.24), indicating, for this 
particular case, that a non-linear recognition method does not 
outperform a linear method.  It might be due to most selected 
spectral variables following a normal distribution by their 
corresponding spectral samples.  
 

Algorithm
11species 5 oak species 11 species 5 oak species

ANN 87.82 87.49 0.8656 0.8428
LDA 86.80 86.31 0.8546 0.8280

Note: The overall accuracies produced by ANN and LDA are not significantly different 
    at 0.95 confidence level for identifying either 11 species or 5 oak species

Overall accuracy (%) Kappa value 

 
 
Table 3. Summary of species identification accuracy using 
ANN and LDA algorithms with 30 selected spectral variables. 
 
 

5. DISCUSSION 
 
In this analysis, among the 30 selected spectral variables 
evaluated by ANOVA, most of the spectral variables are 
directly related to leaf chemistry, especially water status and 
chlorophyll content in leaves.  For example, some selected 
spectral variables relate to water absorption bands:  WI, DEP-
975, AREA-975, and Ratio975 directly relate to the 970 nm 
water absorption band; Ratio1200, NDWI, E-1D, DEP-1200, 
AREA-1200, and WID-1200 are directly correlated with the 
1200 water absorption band; and DSWI relates to the 1750 
water absorption band.  Other spectral variables relate to 
chlorophyll content: C-1D, A-1D, B-1D, R550, A-WP, LCI, B-
WP, NDVI, SR, C-WP, and R680 that may directly describe 
the variation of leaf chlorophyll content.  In general, the full 
range (350 nm to 2500 nm) of spectral wavelength covered by 
the ASD spectrometer is useful for differentiating species that 
differ in their foliage content, water status, pigment content 
and other biochemicals, including visible, near infrared (NIR) 
and middle infrared (MIR) regions (Nagendra, 2001).  
However, due to the heavy water absorption bands near 1.4 μm 
and 1.9 μm, which always happen in in situ spectral 
measurement, visible and NIR bands are generally more useful 
than MIR bands.  In this case, most of the spectral variables 
with high frequency of spectral separabilty between any 
paired-species have been constructed from some of the visible 
and NIR bands. 
 
Although the recognition accuracy (around 88%) derived from 
this study is acceptable for in situ species differentiation much 
work is needed before applying this method to remote-sensing 
image data, including high spatial resolution data, e.g., 
IKONOS (Carleer and Wolff, 2004) and QuickBird (Wang et 
al., 2004) or hyperspectral data, e.g., AVIRIS (Xiao et a., 2004) 
and HyMap (Buddenbaum et al., 2005).  In this study, 
atmospheric effects on the in situ hyperspectral measurements 
was minimal except for the two major water absorption bands 
in the MIR region. However, for remote-sensing image data, 
atmospheric effects have to be corrected or compressed before 
conducting a species recognition analysis (Nagendra, 2001; 

Clark et al., 2005).  Atmospheric correction will enhance the 
spectral separability between species with multi/hyperspectral 
remote-sensing data.  Even so, the preliminary results with the 
in situ hyperspectral data imply that current remote-sensing 
techniques are still difficult but possible to identify similar 
species to such 11 broadleaf species with an acceptable 
accuracy. 
 
 

6. CONCLUSIONS 
 
The ANOVA analysis results indicate that the extracted 30 
spectral variables are effective for  differentiating the 11 
species.  The 30 selected spectral variables include spectral 
variables related to water absorption bands:  WI, DEP-975, 
AREA-975, and Ratio975 (directly related to the 970 nm water 
absorption band); Ratio1200, NDWI, E-1D, DEP-1200, 
AREA-1200, and WID-1200 (directly correlated to the 1200 
water absorption band); and DSWI (related to the 1750 water 
absorption band).  The remaining spectral variables relate to 
chlorophyll content: C-1D, A-1D, B-1D, R550, A-WP, LCI, B-
WP, NDVI, SR, C-WP, and R680 (may directly describe the 
variation of leaf chlorophyll content).  Both classification 
algorithms (ANN and LDA) produced acceptable accuracies 
(OAA from 86.3 % to 87.8%, Kappa from 0.83 to 0.87).  In 
this study, ANN and LDA for classifying the 11 broadleaf 
species have a similar performance and the difference of 
species recognition accuracies between the two classification 
algorithms is not statistically significant at 0.95 confidence 
level.  The preliminary results of identifying the 11 species 
with the in situ hyperspectral data imply that current remote-
sensing techniques, including high spatial and spectral sensors’ 
data, are still difficult but possible to identify similar species to 
such 11 broadleaf species with an acceptable accuracy. 
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