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ABSTRACT： 
 
FPAR (Fraction of Absorbed Photosynthetically Active Radiation) is a key parameter in the study on ecosystem function, crop 
growth monitoring, and so on, it is important to estimate FPAR accurately. Based on the analysis of measured corn hyperspectral and 
PAR data, the conclusions of this paper are: PCA approach can be used to distill hyperspectral information successfully, two 
principal components could hold more than 98.464% of the original hyperspectral information. PCA method could estimate FPAR 
effectively, for analyzing visible and near-infrared band with R2 of 0.858 and RMSE of 0.110, and analyzing near-infrared and 
shortwave band with R2 of 0.868 and RMSE of 0.106. Vegetation indices of (Normalized Difference Shortwave Index) and RSI 
(Ratio Shortwave Index), with the same structure with NDVI and RVI but calculated in different band, were better for FPAR 
estimation than NDVI and RVI. R2 for estimating FAPR of NDSI and RSI are 0.9026 and 0.8951, but 0.8510 and 0.8469 to NDVI 
and RVI. Near and shortwave hyperspectral reflectance has the great potential for estimating FPAR, which could be good to improve 
the precision of FPAR estimation. 
 

1. INTRODUCTION 

FPAR (Fraction of Absorbed Photosynthetically Active 
Radiation), measures the proportion of available radiation in the 
specific photosynthetically active wavelengths of the spectrum 
400-700nm that the canopy absorbs. FPAR is important 
detecting index for vegetation water, energy and carbon balance, 
and a key parameter in the ecosystem productivity model, crop 
yield model, and so on. (Churkina et al., 1999; Sellers et al., 
1997; Lobell et al., 2000)   
Now, FPAR were estimated mainly in the empirical models of 
vegetation indices (Epiphanio et al. 1995; Ridao et al. 1998; 
Eduardo et al., 1998; Daughtry et al., 1992) or the physical 
transfer models. Normalized difference vegetation index (NDVI) 
was often used for FPAR estimating of empirical models. Some 
simple and complicate physical models, such as the CLM 
(Common Land Model) (Tian et al., 2004), 3-Dimensional 
physical transfer model (Myneni et al 1999; Knyazikhin et al., 
1998a, 1998b), were used.  
Hyperspectral data contains abundant spectral information 
which can express the elaborate characteristic of object. It has 
been widely used on objects identification and classification, 
and the estimation of vegetation biophysical and biochemical 
variables (Lucas et al., 2000; Tong et al., 2001; Song et al, 
2006). A series of hyperspectral analyzing techniques such as 
spectral derivate, spectral unmixing, spectral dimension feature 
extracting, were investigated for information extraction (Pu and 
Gong, 2000). The major problem is the high dimensionality of 
hyperspectral data (Pu and Gong, 2004), and some long 
wavelength of reflectance has scarcely been utilized. Principal 
component analysis (PCA) is a classical approach that could 
compress multivariate data sets to several variables that 
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preserving most of the information. By far, PCA method has 
scarcely been used for hyperspectral information compressing 
(Pu and Gong, 2004), and hardly been used for FPAR 
estimation, especially in Northeastern China.  

 
Therefore, this paper will introduce PCA approach for 

hyperspectral reflectance information distilling and FPAR 
estimating, and studied the near-infrared and shortwave bands 
for estimating FPAR, based on the measured corn data in 
Northeastern China. 
 

2. BACKGROUND 

2.1. Study Area and Sampling 

The study site is located in the Changchun and Dehui counties 
of Jilin province in Northeastern China (latitude 43°47′ to 
44°53′N, longitude 125°15′ to 126°24′E) (see Figure 1). The 
mean annual temperature is 4.85 ℃, the mean annual global 
radiation is 118.7 kJ/cm2, the annual sunlight time is 2648.5 
hours, the mean annual precipitation 522 mm. The main 
growing period of crops is May to September. This uppermost 
soil type of this area is black soil, which is part of world famous 
black soil zone of Northeastern China. 
The measured data were collected, for four times in Changchun 
experimental station of Jilin agricultural university on June 15, 
July 5, July 22 in 2007 and August 19 in 2006, and one time in 
Dehui county corn field on August 6 in 2007, totally 99 groups 
data were obtained. 

 
2.2. Canopy Hyperspectral reflectance Measurement 

The ASD spectroradiometer of FieldSpec Pro FR was used for 
measuring corn canopy hyperspectral reflectance, field of view 
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is 25°, spectral range is 350–2500 nm, the spectral resolutions 
of 350–1000 nm and 1000–2500 nm are 3 nm and 10 nm 
respectively, and the re-sampling interval of reflectance is 1 nm. 
Spectral data was collected from 10:30 to 13:00, to make sure 
that the sun elevation angle was above 45°; and keep the fiber 
probe vertically above corn canopy for 1.5 m. When corn was 
high in the later period of growing stages, a ladder was used for 
keeping fiber vertical. It was needed for white board calibrating 
before collecting data for every sampling to eliminate the 
weather condition effect. 

 

1.3 

 
 

2.3. FPAR Measurement 

Photosynthetically Active Radiation (PAR) was measured with 
LI-191SA linear quantum sensor and LI-250A light meter 
produced by LI-COR Inc. LI-191SA inductive area is 
1m×12.7mm, inductive wavelength ranges from 400nm to 
700nm, and with logging unit of µmol m-2 s-1. Logged data is 
the averaged PAR in the inductive area, which could reduce the 
spatial heterogeneity effect. LI-250A logged the result which 
was read and wrote down manually. Four fractions of PAR data 
of each sampling were measured, which are incidence PAR 
above the canopy (PARci), transmitted by the canopy (PARgi), 
and reflected from the soil (PARgr) and the canopy (PARcr), 
and FPAR is calculated by the four fractions (Gallo and 
Daughtry, 1986):  

PARci
PARgrPARgiPARcrPARciFPAR )()( −−−

=  (1) 

 
 

3. METHODOLOGY 

The normalized difference vegetation index (NDVI) and Ratio 
vegetation index (RVI) (Rouse et al., 1974; Jordan, 1969) have 
been the extremely popular spectral vegetation indices for 
biophysical parameter retrieval. They are given as:  
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Where ρNIR and ρRed are the NIR and red wavelength 
reflectance. 
Principal component analysis is effective at compressing 
information in multivariate data sets by computing orthogonal 
projection which maximize the amount of data variance. The 
object of PCA is to find a lower-dimensional representation that 
accounts for the major variance of the original dataset.  
In this study, R2 and RMSE were used as the indicating index of 
the estimating performance for each approach. RMSE was 
calculated with the following equation: 
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where Yp is the predicted FPAR, Ym is the measured FPAR, n is 
the number of sample. 
 
 

4. RESULTS AND DISCUSSION 

1.4 

0 500 1000 1500 2000 2500
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

4.1 Analysis of the Correlations between FPAR and 
Hyperspectral Reflectance 

As seen from Figure 2, FPAR and reflectance showed good 
positive correlations in the near-infrared bands, but negative 
correlations in visible and short wave bands. And the negative 
correlations with the maximum absolute value of 0.895, were 
much better than positive correlations with the maximum 
correlation efficient of 0.786. 

Figure 1. Location of study area 

C
or

re
la

tio
ns

Wavelength (nm)

 
The correlation efficient FPAR and reflectance was different for 
each wavelength. The decreasing reflectance of shortwave band 
is similar with visible band changes as the vegetation grows, but 
the ascend changes for near-infrared bands; and NDVI and RVI 
are calculated with the red and near-infrared bands, therefore, 
we replace the red bands with shortwave band for vegetation 

Figure 2. Correlations between FPAR and 
hyperspectral reflectance 
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1.5 

index computing, and defined to be NDSI (Normalized 
Difference Shortwave Index) and RSI (Ratio Shortwave Index), 
for the same structure as NDVI and RVI respectively. 

4.2. Correlations between FPAR and NDVI, RVI, NDSI, 
RSI with the Combinations of Each Wavelength                                                                              

To avoid the smart wavelength difference, we re-sampled the 
1nm interval hyperspectral reflectance to 2nm, and chose the 
band of 630nm to 690nm for the visible, 760nm to 1250nm for 
near-infrared, 1550nm to 1750nm and 2080nm to 2350nm for 
shortwave band; totally, 58302 combinations (237×246) were 
calculated for NDSI and RSI, 7626 combinations (246×31) for 
NDVI and RVI. The correlations of FPAR and NDVI, RVI, 
NDSI, RSI with the combinations of each wavelength are 

shown in Figure 3. We can see from Fig.3 that NDSI and RSI 
calculated by near-infrared and shortwave band, showed better 
correlations with FPAR than NDVI and RVI calculated by 
visible and near-infrared band. The correlations efficient NDSI 
with FPAR were 0.9146 to 0.9418, and 0.8642 to 0.9343 for 
RSI; but 0.8933 to 0.9116 and 0.8192 to 0.8574 for NDVI and 
RVI. Therefore, we could see that shortwave band showed great 
potential for FPAR estimating. This is due to that shortwave 
band is controlled by water content of vegetation canopy, and 
varies much more acutely than visible band. 
 
 
 
 

 
Band 
Inputs 

Principal 
Component 

Eigen- 
value 

Percent 
(%) 

Cumulative 
Percent (%) FPAR Regression R2 RMSE

c1 12.073 71.015 71.015 Visible- 
infrared c2 4.666 27.449 98.464 

= -9.074c1+3.750c2+0.551 0.858 0.110

c1 11.584 68.142 68.142 Infrared- 
shortwave c2 5.315 31.266 99.408 

= 2.166c1-3.629c2+0.654 0.868 0.106

Table 1. Hyperspectral reflectance analysis and FPAR estimation results by PCA approach 
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4.3. FPAR Estimating of Vegetation Indices 

On the basis of analysis above, we chose the combinations of 
each vegetation index with the best correlations efficient for 
FPAR estimating. The best wavelength combinations for NDVI, 

RVI, NDSI, RSI were 630nm and 936nm, 630nm and 868nm, 
1588nm and 938nm, 1592nm and 1250nm. The regression 
results of vegetation indices and FPAR were shown in Figure 4. 
NDVI and NDSI showed good linear regression with R2 of 
0.8510 and 0.9026, but logarithm regression for RSI and RVI 
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Figure 3. Correlations of FPAR and NDVI, RVI, NDSI, RSI with different wavelength combinations 
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with R2 of 0.8951 and 8469. Also, NDSI and RSI showed 
better performances for FPAR estimating with RMSE of 0.091 
and 0.095, than NDVI and RVI with RMSE of 0.112 and 
0.114. 

4.4. Hyperspectral Reflectance Analysis and FPAR 
Estimation by PCA Approach  

In this study, visible and near-infrared bands of 17 wavelength, 
according to MODIS sensor spectral channels, were analyzed 
by PCA approach, and also near-infrared and shortwave bands 

of 17 wavelength analyzed by PCA, the results were shown in 
Table 1. We could see that PCA approach could compress the 
17 wavelength information to two principal components 
effectively, which keep the information above 98.464%. 
According to the wavelength contributed to the components, 
we found that they contained the visible, near-infrared, 
shortwave band information respectively. And PCA approach 
showed good FPAR estimating performance with R2 of 0.858 
and 0.868, RMSE of 0.110 and 0.106. 

 

 
 
We can see from the analysis above that, the two components 
of PCA approach could retain most of the information and PCA 
approach showed good performance for FPAR estimation. 
Infrared-shortwave bands analysis by the PCA approach 
showed good performance than visible and near-infrared bands 
on FPAR estimation, and similar conclusion could be got from 
the vegetation index analysis above. This may be due to that 
shortwave band reflectance is controlled mainly by the water 
content which plays the important role on photosynthesis and 
affect the vegetation absorption to PAR (Carter, 1991; 
Zarco-Tejada et al., 2003), the near and shortwave infrared 
band of long wavelength is the feedback of canopy FPAR. 
According to the analysis on the correlations between FPAR 
and NDVI, RVI, we also could see that the wavelength 
selection for PCA approach analyzing still need further studies 
because of the redundant hyperspectral information of 
adjoining bands. 
 
 
 

5. CONCLUSIONS 

In this paper, based on measured corn data in northeastern 
China, we studied the correlations of FPAR and NDVI, RVI 
with different wavelength combinations (from visible to 
near-infrared and shortwave bands), and two vegetation indices 
of NDSI and RSI with similar structure of NDVI and RVI, 
were defined and used for FPAR estimating. This paper also 
introduced PCA approach for compressing hyperspectral 
reflectance information and estimating FPAR. The conclusions 
are: NDSI and RSI calculated by the near-infrared and 
shortwave bands showed better performance than NDVI and 
RVI that was computed by the visible and near-infrared bands. 
PCA approach could compress the hyperspectral reflectance 
information effectively, and showed great performance for 
FPAR estimating. From the study of vegetation indices and 
PCA approaches, that shortwave bands have the great potential 
for FPAR estimating, could be concluded.  
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Figure 4. FPAR estimation by NDVI, RVI, NDSI, RSI of best wavelength combination 
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