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ABSTRACT: 
 
This paper reviews the application of fuzzy theory and its combination with artificial neural-network technology for remote sensing 
information extraction. A dynamic fuzzy neural-network model is presented for crop heavy metal stress level assessment based on 
MODIS data. Hyperspectral vegetation indices, including NDVI, EVI and NDVIg, were used as input variables in this model for the 
purpose of enhancing and extracting weak information of crop heavy metal stress obtained from large-scaled farmland under 
complex circumstances. The output error and the root mean square error were considered as system performance evaluation factors. 
250 samples, which contained values of hyperspectral vegetation indices and heavy metal stress levels, were prepared for the 
training process. And fuzzy reasoning rules were generated and evaluated based on their significance. At the end of the training 
process, this dynamic fuzzy neural-network model generated a total number of seven fuzzy rules. Another dataset, with 60 testing 
samples, was applied to evaluate the performance of this trained system. The result of this experiment indicated that this model was 
capable of extracting stress information with reasonable accuracy, which is over 95%, and thus it could be used as an effective tool 
in monitoring and managing agricultural environment. 
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1. INTRODUCTION 

The estimation of crop heavy metal stress level in large scale 
farmland is essential for the management and protection of 
agricultural environment. Besides conventional methods, such 
as crop tissue analysis and soil sampling analysis, remote 
sensing technology has been applied to obtain more complete 
and accurate information. However, crop heavy metal stress is 
a kind of weak information without significant representation 
under complex circumstance. Therefore, it’s difficult to 
classify crop stress level by traditional remote sensing 
information extraction methods. To solve this problem, fuzzy 
theory is applied in this study, and a dynamic fuzzy neural-
network model is built and trained to classify crop heavy metal 
stress level.  
 
Fuzzy neural-network (FNN) is defined as a combination of 
fuzzy theory and artificial neural-network technology, which is 
composed of fuzzy neurons, including fuzzy neurons 
describing “if-then” rules, fuzzy neurons with fuzzy output 
values and fuzzy neurons with fuzzy input values (Shao Dong 
et al., 1999). The greatest advantage of FNNs is their ability to 
model complex, non-linear process without having to assume 
the form of the relationship between input and output variables, 
that is to say, it's unnecessary to apply expert knowledge in 
these systems (Kwokwing Chau, 2006).  Performance of a 
FNN system can be improved by means of modifying network 
architecture, such as “if-then” rules, membership functions and 
the significance of each rule. Considering that it is a useful 
technique for regression and classification problems, increasing 
attention has been paid in recent years to its application in 
remote sensing area. Researchers resorted to various network 
structures and learning algorithms to improve its efficiency and 
accuracy in extracting thematic information from remotely 
sensed data. And it has been found that FNNs have several 
advantages over traditional information extraction methods. 

Firstly, they are non-linear models and thus have the capability 
to analyze complex data patterns. Secondly, they can process 
data at varied measurement scales such as continuous, ordinal 
and categorical data. So, they can describe and analyze fuzzy 
phenomena which are often encountered in practical 
applications (D.P. Kanungo et al., 2006). Thirdly, because of 
their ability to integrate non-spectral information into the 
networks in the form of additional input variables, they allow a 
better discrimination between vegetation spectral reflectance 
and plant stress level (Jesus Favela et al., 1998). By combining 
the power of ANNs for modelling complex phenomena, FNNs 
can provide better results than pure fuzzy logical approach. It is 
the particular intention of this study to remark upon the crop 
heavy metal stress detection and classification by means of 
fuzzy neural-network modeling based on hyperspectral 
remotely sensed data.  
 
In this paper, a dynamic fuzzy neural-network (DFNN) model 
is presented to extract heavy metal contamination information 
in large scale areas under complex circumstance based on 
MODIS data. Values of hyperspectral vegetation indices, 
including NDVI, EVI and NDVIg, were used as input variables. 
Information to be represented by this network was fuzzy rules 
describing the relationship between input variables listed above 
and output crop heavy metal stress level. It was built and learnt 
form training data sets collected form typical heavy metal 
contaminated farmlands. According to experimental result, it 
was verified that this system was capable of extracting stress 
information from hyperspectral remote sensing data of large 
scale farmland with reasonable accuracy, and thus it could be 
used as an effective tool in monitoring and managing 
agricultural environment.  
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2. FNN FOR REMOTE SENSING INFORAMTION 
EXTRACITON 

The FNN system should be trained in an iterative training 
process using the obtained training datasets. After updating this 
model for several times, the topological structure of this 
network and all the weighting indices describing the 
interconnection strengths between neighboring neurons are 
fixed. Then this model will be able to map input variables to an 
estimated output promptly and accurately. 
 
Much of the previous FNN classification work in remote 
sensing has used multilayer feed-forward networks that are 
trained according to backpropagation algorithm (Martin 
Hellmann et al., 2002; Jiao Yunqing et al., 2007). But this 
training procedure is sensitive to the choice of initial network 
parameters. To overcome this problem, adaptive resonance 
theory is used to network development (Sucharita Gopal et 
al.,1999; Hasi Bagan et al., 2003).Another problem is that 
ancillary information applied in FNNs, which is useful to 
eliminate spectral ambiguities, may cause class proliferation, 
that is to say , too many clusters are created or many pixels are 
left unclassified.To address this problem,other methods,such as 
ID3 learning algorithm, are used to postprocess results obtained 
from fuzzy neural-networks(Jesus Favela et al. ,1998). 
 
Despite the recent progress, use of FNN technology in 
remotely sensed data processing is still in primary stage. The 
previous studies indicate that network learning algorithm, 
network topology structure, initialization of parameters and 
input signal presentations are important influencing factors to 
the performance of a FNN system (Wu Yifan, 2004; Zhang 
Qiang et al., 2006). 
 
In the application of FNNs, training time and the accuracy of 
information extraction are important standards of system 
performance evaluation. The accuracy of network can be 
improved by increasing the number of nodes. But as the 
number of neurons increases, more time will be spent on 
network training and data processing. Therefore, the selection 
of appropriate network architecture and learning algorithm is of 
great importance. Besides, the output error of a FNN model is 
greatly depended on the completeness of the training datasets, 
which should cover all the possible cases that the system may 
be encountered (H. Noh et al., 2006). So, it’s vital to prepare a 
typical field site for training data collection. 
 
 

3. A DFNN MODEL FOR CROP HEAVY METAL 
STRESS ASSESSMENT 

In this paper, a DFNN model is presented in order to extract 
crop heavy metal stress information form MODIS data. Quite 
unlike traditional FNNs, the architecture of this model is 
determined by training datasets instead of being predefined. As 
a result, it’s unnecessary to apply expert knowledge in this 
model. Furthermore, all the fuzzy rules are generated or deleted 
according to the network performance and the significance of 
each rule during training procedure. So the amount of fuzzy 
rules generated by this model will not increase exponentially as 
the number of input variables increases. 
 

It is remarked that this DFNN system is equivalent to a Takagi-
Sugeno-Kang model (Min Han et al., 2008). And it can be 
described by the following formula: 
 
 

: :r sf ℜ → ℜ  
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Where X  ( rX ∈ℜ ) = r-dimensional state vector with 
T= [ , , ..., ]1 2X x x xr  

xi = the input variable of the DFNN system 

r = the number of input variables 
s = the number of output variables 
u = the number of total fuzzy rules 

iω  = the significance of each rule 

( )Ri ⋅ = activation function of the hidden units 

. = the Euclidean norm 
rCi ∈ℜ  = the centre of this system 

0ω = the excursion value. 

 
3.1 DFNN Structure Initialization 

3.1.1 DFNN layers: This DFNN model includes one input 
layer, multiple hidden layers and one output layer. Hidden 
layers can be divided into fuzzifier and inference engine 
according to their functional aims. In fuzzifier layer, input 
values will be transformed into fuzzy values based on 
membership functions. Then, they will be analyzed by 
inference engine according to fuzzy reasoning rules obtained 
from training process. The output of hidden layers is crop 
heavy metal stress information described in the form of fuzzy 
values. Ultimately, in output layer, or defuzzifier layer, all 
these fuzzy output values will be transformed into certain 
values which represent the levels of crop stress induced by 
heavy metal contamination. Generally speaking, fuzzifier layer 
and inference engine layer compose the antecedent network 
which corresponds to the "IF" parts of rules. Consequent 
network consist of defuzzifier layer corresponding to the 
"THEN" parts of rules. The structure of this model is presented 
in Figure 1. 
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Figure 1.  A schematic diagram of dynamic fuzzy neural-network model for crop stress level assessment  
 

Each layer in a FNN model contains sufficient numbers of 
neurons which depend on the specific application. The neurons 
in a layer are connected to the neurons in the next successive 
layer and each connection carries a weight (Atkinson P.M. et 
al., 1997). In this model, the input layer receives the data from 
three hyperspectral vegetation indices. Hence, there are three 
neurons in this layer, corresponding to three influencing factors 
in crop stress level assessment. The hidden and output layers 
process the data actively. The number of hidden layers and 
their neurons are determined by trial and error (Gong, 1996). 
By varying the number of neurons in hidden layers, the neural 

network is run for several times to identify the most 
appropriate neural network architecture based on training and 
testing accuracies. The number of neurons in output layers is 
determined in reference to the National Standard (GB15618-
1995) and national food standards. Table 1 shows the soil 
heavy metal pollution classification standard. There are four 
values in output layer, corresponding to four levels of crop 
heavy metal stress, including pollution-free, light pollution 
stress, moderate pollution stress and severe pollution stress. 
They are presented by number 0, 1, 2 and 3. 
 

 
 

As Hg Cd Pb Cr Cu Ni Zn 
Classification 

wl(mg.Kg-1) 

pH<6.5 40 0.3 0.3 250 150 50 40 200 
6.5<pH<7.5 30 0.5 0.3 300 200 100 50 250 GBⅡ 

pH>7.5 25 1.0 0.6 350 250 100 60 300 
 

Table 1.  National Standard (GB15618-1995): Soil Heavy Metal Pollution Classification 
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3.1.2 DFNN input variables: Vegetation spectral 
reflectance is associated with the biochemical composition in 
leaves, such as structure of mesophyll cells, chlorophyll 
content and water content. In different wavelengths, vegetation 
spectrum reflectance curves show different patterns and 
characteristics (Yunzhao Wu et al., 2005). A number of studies 
have demonstrated that shifts in vegetation spectra due to 
heavy metal contamination occurred both the visible and the 
near-infrared part of the spectrum. These studies used spectral 
vegetation indices to investigate changes in plant stress, for 
they can combine two or more spectral bands to enhance the 
vegetative signal while minimizing background effects 
(Lehmann, F. et al., 1991; Sommer, S. et al., 1998; Mohammed 
et al., 2000; L. Kooistr et al., 2004).Heavy metal contamination 
will affect the status of plants, such as pigment contents，
photosynthetic efficiency， nitrogen contents in canopy，and 
carbon contents of leaf. Values of NDVI, EVI and NDVIg can 
indicate the changes of these factors listed above. Therefore, 
they were chosen as the input variables in this model.  
 
3.2 DFNN Training Algorithm 

The aim of the training procedure is to minimize the error, i.e. 
the difference between the calculated output values and the 
target output values, and to generate fuzzy rules. The 
adaptation of the weights during the training process can lead 
to a so called over training problem. This means that the neural 
network can reproduce the training data quite well but has lost 
its ability to generalize. The phenomenon is especially severe 
when only a few training patterns are available.  
 
Therefore, this model starts with a simple network structure 
which contains no fuzzy rules and goes over stepwise to more 
complicated structure. During training process, fuzzy rules will 
be generated according to the system performance. And in the 
meantime, insignificant rules will be deleted. 
 
3.2.1 DFNN structure determination: In fuzzifier layer, 
input data are fuzzified and membership grades are calculated 
according to Gaussian membership function. The membership 
grade of each input value ix  (i=1, 2...r) is given by: 
 
 

2( ) exp[ ]
( )i ij

ij

xij i
x c

μ
σ

=
− −

 (i=1…r; j=1, 2… u)               (2) 

 
 

Where    ijμ  = the membership grade of xi according to the jth 

membership function 

ijc = the centre of the jth membership function 

ijσ  = the importance of the jth membership function. 

 
The output results obtained from this layer are then used as 
input values to the inference engine where T-norm product 
operator is applied to calculate the trigger weight of each rule. 
The output value of the jth rule is computed according to the 
following function: 

 
 

2( )
( , , ..., ) exp[ ]1 2 21
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−
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                            (3) 

 

 

The single node in defuzzifier layer is a fixed node labeled∑ , 
which computes the overall output as the summation of all 
incoming signals: 
 
 

( , , ..., )1 2 1

u
y x x xr j jj

ω φ∑= ⋅
=

                                         (4) 

 
 

Where    y  = the output results of this system 

    jω = the weight of the jth rule 

 
3.2.2 Rule extraction standards: Two standards, output 
error and the width of a Gaussian membership function, are 
introduced to determine whether a new rule should be added 
into current system.  
 
To the thi  training data ( , )iXi t , the output error can be 

computed as follows: 
 
 

e t yi i i= −                                                                  (5) 
 

 
Where Xi  = the input vector 

 ti  = the target output value 

yi = the calculated output value resulted from current 

system 
 

In comparison with the predefined precision ke , if 

 
 

e ki e>                                                                           (6) 

 
 

Then a new rule should be generated. 
 
In this model, the input variables are classified into several 
fuzzy sets according to Gaussian membership function. The 
amount of overlap between data sets is controlled by the widths 
of Gaussian membership functions. An input training data can 
be present by a Gaussian membership function, if its 
membership grade is within the accommodation range.  
 
To the ith  training data ( , )X ti i , the distance between input 

value Xi  and the center of Gaussian membership function can 

be computed as follows: 
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( )d j x ci ji = −    (j=1, 2…u)                                     (7) 

 

 
Where u = the number of total fuzzy rules 

c j =the centre of Gaussian membership function.  

 
In comparison with the accommodation criterion value kd , if 

 
 

arg min( ( ))d j ki d>                                                      (8) 

 

 
Then a new rule should be generated. 
 
3.3 Performance Evaluation 

The performance of a FNN model should be evaluated based 
on following requirements (Ralf Wieland et al., 2008): 

1. Accuracy: The error resulting between the calculated 
and target output values should be minimal; 
2. Generalization: The model should reduce the 
complexity of the real world using an approximation of 
the data based on fundamental knowledge; 
3. Portability: The model should be usable in different 
sites with slightly changed inputs compared to the training 
data. 

 
Herein, the root mean square error (RMSE) and the output 
error were considered as statistical performance evaluation 
factors. To check the utility of this DFNN model, 250 samples 
containing hyperspectral vegetation indices values and heavy 
metal stress level information were applied to neural-network 
training process. And fuzzy rules were generated as is shown in 
Figure 2. During this process, a total number of eight fuzzy 
rules were generated. Considering the significance of each rule, 
one of them was deleted. At last, this training process 
generated seven fuzzy rules. 
 
 

 
 

Figure 2.  Generation of fuzzy rules based on 250 training 
samples obtained from MODIS data 

 
Figure 3 presents the change of RMSE value during training 
procedure. The RMSE can be achieved less than 0.5 at the end 

of this process. This result indicated that the best network 
architecture had been formed. 
 
 

 
Figure 3.  Root mean square error during training process based 

on 250 training samples obtained from MODIS data 
 

Another dataset was prepared to evaluate the accuracy and 
generalization ability of this model. It was composed of 60 
samples which were quite different from training data samples 
on crop heavy metal stress. The comparison of calculated and 
target outputs was shown in Figure 4. Three samples within 
these 60 testing samples were misclassified because their stress 
levels were distributed near the edge of two levels. According 
to the experimental result, this system achieve to an accuracy 
of 95% by a total number of seven fuzzy rules. It was 
confirmed that for crop heavy metal stress level assessment, 
this DFNN model can produce a satisfying recognition rates 
with minimal number of hidden neurons. 
 
 

 
Figure 4.  Comparison of calculated and target outputs based 

on 60 testing samples obtained from MODIS data 
 
 

4. CONCLUSIONS 

This paper presents a dynamic fuzzy neural-network (DFNN) 
model and its application to the assessment of crop heavy metal 
stress levels based on MODIS data. The proposed model uses 
hyperspectral vegetation indices as input variables in order to 
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enhance weak heavy metal stress information, and Gaussian 
membership function is adopted because of its non-constant 
differentiable character. Tow standards, output error and the 
width of Gaussian membership function, are used to decide 
whether a new fuzzy rule should be added into this system. The 
significance of each rule is evaluated to decide whether a rule 
should be deleted. A training data set which is composed of 
250 samples obtained from MODIS data is applied to adjust 
network structure and to generate fuzzy rules. On the basis of 
seven fuzzy reasoning rules, this system can achieve 95% 
accuracy. According to the result of experiment, the advantages 
of this DFNN model are summarized as follows: 

1. It offers faster convergence and is less sensitive to 
both training and testing datasets; 
2. It substantially decreases the number of hidden 
neurons which is crucial in the optimization of network 
structure, as fuzzy rules are generated or deleted 
according to the network performance and the significance 
of each rule; 
3. It is capable of extracting crop heavy metal stress 
information with reasonable accuracy, and thus it could be 
used as an effective tool in monitoring and managing 
agricultural environment. 
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