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ABSTRACT: 
 
Remote sensing has been increasingly used to derive land cover information by manual interpretation or automated classification. As 
promising automated classifiers, artificial neural networks are difficult to parameterize, thus challenging their applicability. Previous 
studies investigated the impacts of some external factors, such as input data and training samples, upon neural network classification, 
but paid relatively little attention on how to appropriately parameterize their internal parameters. In this paper, we report the result of 
a pilot project aiming to develop some guides for parameterizing the multi-layer-perceptron (MLP) feed-forward back-propagation 
neural networks. The internal parameters we consider include the number of hidden layers, activation function, learning rate, 
momentum, threshold, and number of iterations. We choose part of the Atlanta metropolitan area, Georgia in the U.S.A as the test 
site where the landscape mosaic is characterized by several decades of rapid urban growth. We carefully configure 59 neural 
networks models with different internal parameters settings. We train these models with the same sample dataset and use each of 
them to map land cover information from a Landsat Enhanced Thematic Mapper Plus (ETM+) image. We compute the overall 
classification accuracy for each derived map by using the identical reference data. We found that the four internal parameters, 
namely, activation function, learning rate, momentum, and number of iterations, significantly affect classification accuracy; while 
the other two parameters, namely, threshold and number of hidden layers, also impact the classification performance. Finally, we 
propose a guideline that can help parameterize the MLP neural networks, and thus our study should help promote the operational use 
of neural networks for land cover classification. 
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Land cover refers to the physical and biological cover at the 
surface of the earth, including water, vegetation, bare ground, 
man-made structures, etc. In recent years, land cover is found to 
be closely associated with our environments and ecosystems, 
such as global and local climate, hydrologic circle, pollutions, 
biodiversity, and soil erosions. Due to its technological 
robustness and cost-effectiveness, remote sensing has been 
increasingly used to derive land cover information through 
either manual interpretation or automated classification. The 
latter is more desirable but can be less effective for classifying 
heterogeneous landscapes. Artificial neural networks are 
commonly conceived to have the capability of improving 
automated classification accuracy due to their distributed 
structure and strong capability of handling complex phenomena.  
 
Artificial neural networks are the models based on biological 
neural networks. They consist of an interconnected group of 
neurons. Each neuron contains a single computation process. 
The multi-layer-perceptron (MLP) feed-forward back-
propagation neural networks are most popular in practice due to 
their easiness to understand and implement. A typical structure 
of a MLP neural network is comprised of neurons and their 
links in a layered structure. The input to a neuron in such a 
network is the weighted sum of the outputs of neurons at the 
previous layer. Each neuron at both hidden and output layers 
contains a single process which is to transform the input using a 
linear or non-linear function, namely, activation function.  

 
Many experiments have shown that MLP neural networks are 
more accurate for land cover classification than traditional 
statistical methods (Bischof et al., 1992; Civco, 1993; Serpico 
et al., 1996; Chen et al., 1997). However, their applicability has 
been challenged by the complexity of neural networks 
parameterization. A number of factors need to be considered 
when parameterizing neural networks, which include input data, 
training samples, output settings, networks architecture, initial 
weights, and training parameters. Most of the previous studies 
targeted several external factors, such as input data and training 
samples. Several studies investigated some internal parameters, 
such as the number of hidden layers (Civco, 1993; 
Kanellopoulos and Wilkinson, 1997; Foody and Arora, 1997; 
Kavzoglu and Mather, 2003), activation function (Shupe and 
Marsh, 2004), and the combination of training rate and 
momentum (Kavzoglu and Mather, 2003). However, their 
findings are not consistent.  Further research is needed to 
comprehensively investigate the possible impacts of these 
internal parameters upon the performance of land cover 
classification.  
 
Through the analysis of MLP neural networks topology and 
back-propagation training method, the internal parameters that 
could potentially affect classification accuracy include number 
of hidden layer and neurons, activation function, learning rate, 
momentum, threshold, and number of iterations. The effect of 
the number of neurons has been investigated elsewhere (e.g. 
Foody and Arora, 1997; Kanellopoulos and Wilinson, 1997; 
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Shupe and Marsh, 2004), and our pilot study concentrated on 
the other six parameters. 
 
The objective of our study was to develop a guideline for 
setting the internal parameters of the MLP neural networks 
trained by the back-propagation method. Firstly, we chose an 
appropriate study area and identified a land cover classification 
scheme. Secondly, we carefully configured 59 neural networks 
models with different internal parameters settings and trained 
each of them using the same sample dataset. We used each of 
these models to classify an ETM+ image covering the study 
area, and assess the overall classification accuracy for each land 
cover map by using the identical reference dataset. Finally, we 
analyzed the impact of each parameter and proposed a guideline 
for parameterizing the MLP neural networks trained by the 
back-propagation method.    
 
 

2. RESEARCH METHODOLOGY 

Optimum internal parameters setting can be obtained by 
separately investigating the impact of each individual parameter 
on classification accuracy. We carefully configured a total of 59 
neural networks models by altering the value of one  parameter 
while holding other parameters unchanged. These models have 
been used to derive land cover information from remotely 
sensed data. The effect of each parameter can be evaluated in 
term of classification accuracy. Figure 1 illustrates the working 
procedural route.  

 

Figure 1. Flowchart of the working procedural route. 
 
2.1 Study Area and Data 

Our test site is located in the north-eastern Atlanta metropolitan 
area, Georgia in the U.S.A (Figure 2). This study area, mainly 
covering Gwinnet County, Georgia, has been experiencing 
rapid urban expansion in recent decades (Yang, 2002). The 
existence of a large amount of transitional land uses (such as the 
residential areas under construction) challenges the applicability 
of automated classification.  It is hoped that appropriately 
parameterized neural networks can help improve image 
classification in such a complex environment. 
 
An ETM+ image obtained on 9 September 1999 was used to 
derive land cover information. This image had already been 
accurately rectified and geo-referenced to a UTM map 
projection (Zone 16), a NAD 83 horizontal datum, and the GRS 
1980 ellipsoid. Therefore, geometric rectification was not 
attempted. To conduct land cover classification by neural 
networks, seven spectral data channels (except the thermal band) 
were included as the inputs to each of the neural networks 
model. The spatial resolution ranges from 15 m for the 
panchromatic band to 28.5 m for the other five bands. We did 
not use the thermal band since it has much lower spatial 
resolution (60*60m) comparing with other bands. The nearest-

neighbor resampling method was adopted to avoid changing the 
original pixel values of the image data. The original image was 
resampled to 15 meters. 
 

  
 

Figure 2. Location of the study area and the image coverage.  
 

In addition to the ETM image, we also collected two types of 
reference data through field observations and the use of high-
resolution images from the Google Earth. The Google Earth 
provides remote sensor images with spatial resolution as high as 
2.8m or better for the test site. With the use of the high-
resolution images from the Google Earth, we developed a 
sample dataset that was randomly spitted into the training 
subset and the test subset. Field observations were used to 
supplement or confirm the interpretation from the Google Earth 
images, particularly for the test samples.    
 
2.2 Land Cover Classification Scheme 

The land-cover classification scheme originally designed by 
Yang (2002) was adopted here.  This system includes six major 
classes: high-density urban use, low-density urban use, exposed 
land, cropland/grassland, forest, and water.  

No. Class Description 

1
High-

density 
urban use

Approximately 80 to 100 percent 
construction materials; typically 
commercial and industrial buildings with 
large open roofs, large open transportation 
facilities, and high-density residential areas 
in the city cores 

2
Low-

density 
urban use

Approximately 50 to 80 percent 
construction materials; often residential 
development including mostly 
single/multiple family houses and public 
rental housing estates as well as local roads 
and small open spaces in a residential area; 
with certain amount of vegetation cover 
(up to 20 percent) 

3 Exposed 
land 

Areas of sparse vegetation cover (less than 
20 percent), including clear-cuts, quarries, 
barren rock or sand along river/stream 
beaches 

4 Cropland/
grassland

Golf courses, lawns, city parks, crop fields, 
and pasture 

5 Forest Deciduous, coniferous, and mixed forests 
and orchards 

6 Water Streams, rivers, lakes, and reservoirs 
 

Table 1. Land cover classification scheme (Yang, 2002) 
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2.3 Parameterizing Neural Networks Models 

The general rule here was to alter the value of one parameter at 
one time while holding the other unchanged.  In this way, the 
effect of each parameter can be evaluated separately. For 
example, to investigate the impact of number of hidden layers, 
five neural networks models were configured with the number 
of hidden layers ranging from 0 to 4 while holding the other 
parameters unchanged.  
 
Table 2 shows the model configurations. Note that models 1 to 
43 were used to assess the impacts of the internal parameters 
excluding activation function. In addition, we considered the 
two widely used non-linear activation functions, namely, log-
sigmoid function and tan-sigmoid function; their impacts can be 
assessed by comparing models  44 to 53 with models 13 to 22. 
Models 54 to 59 were used to assess the impact of number of 
iterations upon the performance of the tan-sigmoid function.    
    
2.4 Image Classification and Accuracy Assessment 

The training dataset contains 250 samples for each land cover 
class; the test dataset has 50 samples for each class that were 
selected by using the stratified random scheme. Note that the 
identification of each dataset involved the use of the high-
resolution images from the Google Earth as the reference.  
 
The 59 neural networks models were trained using the identical 
training dataset. The training process for most of these models 
converged except the fifth model with four hidden layers. The 
training root-mean-square (RMS) errors for these models 
largely ranged from 0.26 to 0.40; four of them were larger than 
0.40. No obvious relationship between the classification 
accuracy and the training RMS errors had been observed. 
 
A total of 59 land cover classification maps were produced 
from the ETM+ image by using the trained models. With the 
test dataset as the reference, the accuracies of these maps were 
assessed using the thematic accuracy assessment method (see 
Jensen 2005). An error matrix was generated for each map and 
the overall classification accuracy was computed (Table 2).   
 
 

3. RESULTS AND DISCUSSION 

Based on Table 2 and Figure 3, it is clear that the accuracies of 
land cover classification vary across different neural models 
associated with different internal parameter settings. In 
particular, the four internal parameters, namely, activation 
function, training rate, momentum, and number of iterations, 
are found to highly affect the classification accuracy.  
 
Based on Figure 3a, it is clear that increasing the number of 
hidden layer does not help improve classification accuracy; the 
neural network model with one hidden layer shows the best 
overall accuracy. This observation is consistent with the results 
obtained by Kanellopoulous and Wilkinson (1997). When the 
number of hidden layers increased to four, training of the model 
failed to converge. Based on this experiment, we suggest that 
neural networks with one hidden layer are suitable for multi-
spectral image classification with a few output classes. 
However, more complex topology may need when a large 
number of input data are used or when many different classes 
are to be generated.  
 

The models configured with the tan-sigmoid function had much 
lower classification accuracies than those with the log-sigmoid 
function (Figure 3b). The models with the tan-sigmoid function 
did not vary greatly in their classification accuracies as the 
number of iterations increased (Table 2).  

Internal Parameters* 
No.

HL AF LR MO TH IT OA(%)
1 0 Log 0.01 0.6 0.2 1000 79.33
2 1 Log 0.01 0.6 0.2 1000 80.00
3 2 Log 0.01 0.6 0.2 1000 77.67
4 3 Log 0.01 0.6 0.2 1000 66.67
5 4 Log 0.01 0.6 0.2 1000 N/A
6 1 Log 0.3 0.6 0.2 1000 69.33
7 1 Log 0.25 0.6 0.2 1000 65.67
8 1 Log 0.2 0.6 0.2 1000 72.67
9 1 Log 0.15 0.6 0.2 1000 71.67
10 1 Log 0.10 0.6 0.2 1000 76.00
11 1 Log 0.05 0.6 0.2 1000 79.33
12 1 Log 0.01 0.6 0.2 1000 80.00
13 1 Log 0.01 0 0.8 1000 72.33
14 1 Log 0.01 0.1 0.8 1000 73.00
15 1 Log 0.01 0.2 0.8 1000 75.67
16 1 Log 0.01 0.3 0.8 1000 75.67
17 1 Log 0.01 0.4 0.8 1000 76.00
18 1 Log 0.01 0.5 0.8 1000 76.67
19 1 Log 0.01 0.6 0.8 1000 79.00
20 1 Log 0.01 0.7 0.8 1000 78.00
21 1 Log 0.01 0.8 0.8 1000 78.67
22 1 Log 0.01 0.9 0.8 1000 78.33
23 1 Log 0.01 0.6 0 1000 82.00
24 1 Log 0.01 0.6 0.1 1000 79.67
25 1 Log 0.01 0.6 0.2 1000 80.00
26 1 Log 0.01 0.6 0.3 1000 80.33
27 1 Log 0.01 0.6 0.4 1000 80.00
28 1 Log 0.01 0.6 0.5 1000 79.67
29 1 Log 0.01 0.6 0.6 1000 79.00
30 1 Log 0.01 0.6 0.7 1000 78.33
31 1 Log 0.01 0.6 0.8 1000 79.00
32 1 Log 0.01 0.6 0.9 1000 72.00
33 1 Log 0.01 0.6 0.2 400 75.33
34 1 Log 0.01 0.6 0.2 700 78.00
35 1 Log 0.01 0.6 0.2 1000 80.00
36 1 Log 0.01 0.6 0.2 1300 80.67
37 1 Log 0.01 0.6 0.2 1600 81.33
38 1 Log 0.01 0.6 0.2 1900 82.00
39 1 Log 0.01 0.6 0.2 2200 82.67
40 1 Log 0.01 0.6 0.2 2500 83.00
41 1 Log 0.01 0.6 0.2 2800 83.00
42 1 Log 0.01 0.6 0.2 3100 84.00
43 1 Log 0.01 0.6 0.2 3400 83.33
44 1 Tan 0.01 0 0.8 1000 40.33
45 1 Tan 0.01 0.1 0.8 1000 40.33
46 1 Tan 0.01 0.2 0.8 1000 40.67
47 1 Tan 0.01 0.3 0.8 1000 43.00
48 1 Tan 0.01 0.4 0.8 1000 40.67
49 1 Tan 0.01 0.5 0.8 1000 34.67
50 1 Tan 0.01 0.6 0.8 1000 40.33
51 1 Tan 0.01 0.7 0.8 1000 39.00
52 1 Tan 0.01 0.8 0.8 1000 17.33
53 1 Tan 0.01 0.9 0.8 1000 17.33
54 1 Tan 0.01 0.6 0.8 2000 30.00
55 1 Tan 0.01 0.6 0.8 3000 29.33
56 1 Tan 0.01 0.6 0.8 4000 39.67
57 1 Tan 0.01 0.6 0.8 5000 40.33
58 1 Tan 0.01 0.6 0.8 6000 40.67
59 1 Tan 0.01 0.6 0.8 7000 39.67
 HL=Number of Hidden Layers; AF=Activation Function; 

LR=Learning Rate; MO=Momentum; TH=Threshold; 
IT=Number of Iterations; OA=Overall Accuracy; 
Log=Log-sigmoid Function; Tan=Tan-sigmoid Function. 
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Table 2. List of the neural networks models as related to 
different internal parameters.  

     

     

    
 
Figure 3. Trends of the overall classification accuracies (Y-axis) 
as related to different internal parameters (X-axis): (a) number 
of hidden layers, (b) activation function, (c) learning rate, (d) 

momentum, (e) threshold, and (f) number of iterations. 
 
By adjusting the learning rate, the classification accuracy 
increased from 65.7% to 80% (Figure 3c).  The classification 
accuracy increased by more than six percent with the increase 
of the momentum value (Figure 3d). The classification accuracy 
increased when the number of iterations increased but this trend 
slowed down when the number was quite big (see Figure 3f). 
This indicates the occurrence of over-training which can reduce 
the generalization capability of neural networks. Apparently, 
the three training parameters, namely, learning rate, momentum 
value, and number of iteration, have a significant effect on the 
classification accuracy. The value of threshold does not seem to 
be quite influential to the classification accuracy as a large 
portion of the curve in Figure 3e is quite flat.  However, the 
accuracy plunged when the value of threshold was increased to 
0.9 (Figure 3e).  

 
4. SUMMARY AND CONCLUSIONS 

In this study, we assessed the impacts of several internal 
parameters of the MLP neural networks trained by the back-
propagation method upon the performance of land cover 
classification from remote sensor data. A total of 59 models 
were carefully configured with different parameter settings, 
which were applied to classify an ETM+ image covering a 
complex urban/suburban area.  The classification accuracies 
were further compared. 

 
We found that a large number of hidden layers did not help 
boost classification accuracy. The log-sigmoid function is found 
to outperform the tan-sigmoid function. We also found that the 
MLP neural network models have been quite sensitive to the 
training parameter settings; to optimize the classification 
performance, we recommend using a small learning rate, 
moderate momentum, moderate number of iterations, and zero 
threshold. Therefore, our study should help promote the 
operational use of neural networks for land cover classification. 
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