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ABSTRACT:  
 
Machine learning algorithms recently have made major advances, with decision tree classifiers gaining wide acceptance. Boosting 
and bagging of decision trees have added to the predictive capabilities of these approaches.  Object-oriented (O-O) analyses have 
been developed during this same period, offering important improvements in classification over pixel-based approaches under certain 
conditions.  Classification algorithms for O-O approaches, however, have been fairly limited and generally have not incorporated 
new statistical approaches used for pixel-based classifications.  One of the most promising new classification algorithms is Random 
Forest (Breiman-Cutler) classification (RF).  We incorporated RF into an O-O classification of Landsat-based imagery for mapping 
agricultural lands in north-central Montana, USA.  The Definiens multi-resolution segmentation algorithm was used to generate field-
based objects.  RF was used to classify land management (tillage, conservation reserve, crop/fallow) based on reference data from 
>400 field sites.  Object-based attributes included factors such as average spectral response, spectral variability, texture, and shape 
characteristics.  Accuracy was assessed using “out-of-bag” estimates in RF.  This classification approach was able to efficiently and 
accurately merge RF with an object-oriented approach for improved classifications. 
 
 

1. INTRODUCTION 

Advanced image classification algorithms are becoming 
increasingly popular within the remote sensing community.  
These include, but are not limited to, boosting and/or bagging-
based classification and regression trees (CART) (Lawrence et 
al., 2004; Lawrence and Wright, 2001; Baker et al., 2001) and 
the CART-based Random Forest (RF) algorithm (Lawrence et 
al., 2006; Ham et al., 2005).  These classification techniques 
have been utilized primarily on a per-pixel basis, in spite of 
advancements in object-oriented (O-O) image segmentation and 
analysis.  
 
Object-based image analysis moves beyond the somewhat 
disconnected process of analyzing individual data points within 
a landscape by grouping together pixel-regions according to 
spectral and spatial similarity (Navulur, 2007).  The resulting 
image objects serve as integrated entities that exhibit an 
intrinsic scale and are composed of structurally connected parts 
or pixels (Hay et al., 2003).   
 
The RF classification algorithm is superior to many tree-based 
algorithms, because it lacks sensitivity to noise and is not 
subject to overfitting.  Some studies have suggested that RF is 
“unexcelled in accuracy among current algorithms” (Breiman 
and Cutler, 2005).  RF has also outperformed CART and similar 
boosting and bagging-based algorithms (Gislason et al., 2006; 
Pal, 2003).  This algorithm uses bagging to form an ensemble of 
classification trees (CART-like classifiers) (Breiman, 2001; 
Gislason et al., 2006).  Bagging, or bootstrap aggregating, forms 
multiple training sets by sampling from a primary data set with 
replacement (Breiman and Cutler, 2005).  Bagging is  
 
advantageous as it improves model stability; the model’s 
predictive ability increases as data over-fitting is avoided. RF is 
distinguished from other bagging approaches in that at each 

splitting node in the underlying classification trees, a random 
subset of the predictor variables is used as potential variables to 
define the split.  
 
RF utilizes the Gini index of node impurity (Breiman et al., 
1998) to determine splits in the predictor variables that result in 
the greatest classification accuracy.  Tree “branches” are split in 
a manner that reduces the uncertainty present in the data and 
hence the probability of misclassification.  Ideal branch 
partitioning, or a Gini value of zero, occurs when only one class 
is represented at each terminal node.  The bagging and splitting 
process continues until a “forest”, consisting of multiple trees, is 
created.  Classification occurs when each tree in the forest casts 
a unit vote for the most popular class (Breiman, 2001).  This 
results in a classified output determined by a plurality vote.  
Unlike CART analysis, trees in RF are not pruned.  Pruning is 
not needed as each classification is produced by a final forest 
that consists of independently generated trees created through a 
random subset of the data, avoiding over fitting (Breiman, 
2001). 
 
Another advantage to RF is given by an internal accuracy 
measure that makes it unnecessary to partition reference data 
into separate sets for training and validation.  All available 
reference data, therefore, can be used to develop the predictive 
model.  Test set accuracy is estimated in RF by running out-of-
bag (OOB) samples (a subset of the training data that was not 
included in the bootstrap for a particular tree) down through a 
tree as a form of cross-validation.  A study comparing OOB 
accuracy assessments with the traditional error matrix approach 
for resulting rangeland classifications reported that the OOB 
estimates were within 3% of the independent accuracy 
assessments, with most less than 1% apart (Lawrence et al., 
2006).  The authors cautioned, however, that OOB estimation is 
only reliable given an absence of bias in the reference data.  An 

579



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

RF package is currently available in both R and S-Plus 
(Insightful) statistical packages. 
 
Some studies have utilized advanced classification algorithms 
within O-O analysis.  Classification algorithms within the 
popular Definiens O-O platform are currently limited to a 
nearest neighbor (NN) classification that utilizes fuzzy logic and 
a membership function-based classification (Navulur, 2007).  A 
decision tree classification was used in an object-based analysis 
of IKONIS imagery for forest inventories, resulting in 
producer’s accuracies ranging from 81-100% and 86% total 
accuracy (Chubey et al., 2006).  The study suggested that 
advanced classifiers with the ability to process an extensive 
number of inputs are required to take full advantage of the rich 
set of data that can be derived through O-O analysis.  Another 
study used a CART-based classification to map Benthic 
coastline habitats with 74% overall accuracy (Green and Lopez, 
2007).  Other approaches utilizing advanced classification 
techniques within O-O analyses have included the application of 
CART-based rules to increase K-NN classifications (Yu et al., 
2006) and the incorporation of genetic algorithm feature 
selection within neural network classifications (Van Coillie et 
al., 2007).  Classification and regression tree algorithms are 
advantageous as they utilize advanced statistical techniques to 
produce in many cases a more accurate classification model; 
model rule sets can then be readily incorporated into the 
Definiens Developer (formerly Professional) O-O program to 
produce an object-based classification map.  O-O studies 
utilizing the RF classifier have not been identified by the 
authors at this time.  This might be due to a general lack of 
knowledge pertaining to the RF model within the O-O 
community and the inability to generate apparent rule sets that 
can be taken into the Definiens software for mapping the 
classification results.   
 
We applied RF to field-based image objects derived from 
moderate resolution Landsat TM and ETM+ imagery in an 
attempt to identify accurately agricultural management practices, 
namely no-till (NT) and conservation reserve (CR).  Field 
vegetative status was also determined, as this information might 
be used to determine multi-year crop and fallow patterns for 
cropping intensity purposes.   
 
 

2. METHODS 

Our focus was on mapping dry land cropping practices within 
north central Montana.  This semi-arid region is known for its 
production of dry-land wheat.  Area farmers have been 
encouraged to implement conservation practices, such as NT 
and CR, to increase soil organic carbon (Fawcett and Towery, 
2002).  The implementation of continuous cropping, or 
exclusion of summer fallowing, also has been suggested.  
Summer fallow is when cropland is left un-vegetated for a 
growing season to increase soil moisture storage. 
 
Field management data were collected early June 2007 for 
locations randomly selected throughout the region.  The 
resulting cropland data set included information for 78 NT-
fallow, 138 NT-cropped, 48 tilled-fallow, 148 tilled-cropped, 
and 113 CR field sites.  The actual number of field sites utilized 
within the model-building process was scene-dependent due to 
cloud masking and missing pixel information resulting from 
ETM+ scan-line gaps.  
 
Landsat image pairs (path 39; rows 26, 27) were obtained for 15 
May (Landsat 5 TM) and 11 August (Landsat 7 ETM+) 2007.  

Geometric correction techniques were used to ensure that the 
images were properly aligned within geographic space, 
followed by cloud and shadow masking to remove contaminated 
pixels.  Image data were then converted to exoatmospheric 
reflectance to minimize between-image differences due to earth-
sun distance and solar angle (Chander et al., 2007; SDH-L7, 
2006).  Normalized Difference Vegetation Indices (NDVI), 
representative of relative photosynthetically active vegetation 
densities (Tucker and Sellers, 1986), and the Tasseled Cap 
components associated with soil brightness, vegetation 
greenness, and surface wetness (Crist et al., 1986; Huang et al., 
2002) were also included as predictors.  It was thought that the 
addition of these indices might better allow for node splitting 
within the model.  A non-cropland mask was applied to remove 
water bodies, urban and public lands, transportation networks, 
and rangeland.   
 
Vector-based image objects representing parcel management 
strips and within-strip sections of spectral and textural similarity 
were generated through the multi-resolution O-O segmentation 
algorithm (Benz et al., 2004).  The within-strip segmentation 
was used to reduce the inclusion of both crop and bare soil 
within an image-object.  A strip-based segmentation was 
determined to be suitable for tillage and CR classifications, as it 
was unlikely that these management types would vary within 
field-based boundaries.  Vector information representing 
taxable field parcels was also included within the segmentation 
process, to ensure that generated objects were constrained 
within ownership boundaries (Figure 1). 
 
 

 
 

Figure 1.  Object segmentation results for the field strip level 
(red vector lines).  Black parameter lines represent taxable field 

boundaries. 
 
Resulting object-based attribute data were imported into the 
randomForest package (S-PLUS®) to generate classification 
models for NT and till, CR and cropland, cropped and fallow.  
These included spectral, textural, and neighborhood object-
based parameters.  Initial forest models were built using 500 
generated classification trees, the default number.  Model tree 
adjustments were based on an analysis of model error as 
influenced by the number of RF trees.  Model classification 
matrices and associated class accuracies were determined 
through the internal OOB accuracy assessment (Breiman, 2001).  
Data from either image dates, or predictor parameter sets 
utilizing data from both image dates, were examined in the 
generation of class models.  A May TM pixel-based tillage 
model also was examined, in addition to the object-based 
models, to ascertain the effect that object-based textural and 
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neighborhood parameters might have in improving tillage 
accuracy.   
 
Class predictions were exported and joined with the existing 
vector objects (in .shp format) according to field identification 
numbers, within a GIS platform (Figure 2).  This allowed for an 
efficient way to examine spatial relationships between cropland 
management class predictions, spectral image data, and various 
other data sets.     
 
 

 
 

Figure 2.  The vector-based cropped and fallow classification 
layer, overlaying a Sept. 2007 ETM+ image.  Areas of green 

represent cropped land; brown represents summer fallow. 
 
 

3. RESULTS AND DISCUSSION 

Results from this study demonstrated that the RF classification 
algorithm applied to field-based image objects can provide high 
class accuracies in the discrimination of cropland from CR and 
crop from fallow (Table 1).  An RF O-O classification based on 
May TM data was able to successfully separate CR from 
cropland with producer’s accuracies of 90% and 100%, 
respectively.  Previous pixel-based studies had relied on more 
elaborate multi-year change techniques to achieve similar 
accuracies (Egbert et al., 1998; Price et al., 1997).  
Classification error primarily resulted from the misclassification 
of CR as NT-cropped and tilled-crop.  The misclassified sites 
were often those under recent conversion from cropland to CR, 
as was determined by an examination of data supplied through 
the Montana Farm Service Agency.   
 
The ability to distinguish senesced crop from fallow with 
greater than 82% accuracy is considered to be highly acceptable, 
especially given the ability of the O-O-based RF model to 
separate stubble-laden fallow fields from those recently 
harvested.  The RF variable importance plot indicated that 
object textural measures such as within-object contrast and 
homogeneity were often used as model predictive parameters, 
suggesting that object-derived information allowed for greater 
predictive ability under certain conditions.   
 
Misclassification errors within the fallow category were 
attributed to objects located within landscapes characterized by 
narrow (< 100 m wide) crop and fallow strip management, due 
to within-pixel mixing of crop and fallow spectral signatures.  
The object-based classification tended to favor the “cropped” 
class, resulting in a classification bias under these conditions.   
 

 

 
Table 1.  Classification (OOB) accuracy for tillage, CR, and 

crop status. 
 
An object-based RF classification was not able to adequately 
distinguish tillage from NT (31% producer’s accuracy), 
although accuracies were generally higher than was achieved 
with a pixel-based approach using these data.  It was expected 
that RF, used in conjunction with an object-based approach, 
would have produced higher classification accuracies than those 
generated through a pixel-based, logistic regression approach.  
The O-O and pixel-based classifications, however, produced 
results very similar to those previously reported (Bricklemyer et 
al., 2006).  The failure of RF to increase tillage class accuracy is 
likely due to a greater degree of spectral variability within 
management data utilized within this study, resulting from a 
larger number of study locations taken over a larger spatial area 
compared to the previous study.  General difficulty in 
distinguishing tillage from NT has been reported in situations 
where the soil surface is covered by established crop canopy 
and plant residues (Daughtry et al., 2006; Gowda et al., 2001).  
An evaluation of RF model error showed that tilled-cropped 
locations were often misclassified as cropped NT or fallow NT, 
resulting in low producer’s accuracies for both the RF-based O-
O and pixel-based tillage classifications.  We believe that 
similarities in surface residue cover between NT and tilled sites 
greatly attributed to the misclassification problem.   
 
 

4.  CONCLUSION 
This study successfully applied the RF classification algorithm 
to spectral, textural, and neighborhood object-based parameters.  
Results from this study suggest that RF, used in conjunction 
with object-based data derived from moderate-resolution 
Landsat imagery, can accurately classify crop from CR and crop 
from fallow despite variability in the spectral data set.  The 
incorporation of O-O methodology with RF efficiently allows 
for the integration of complex machine learning techniques with 
an advanced approach to image analysis.  It also was found that 
classification predictions generated through randomForest could 
be easily incorporated into object database format for GIS-based 
spatial analysis.  
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