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ABSTRACT： 
 
Although spectral mixture analysis has been widely used for mapping the abundances of physical components of urban surface with 
moderate spatial resolution satellite imagery recently, the spectral heterogeneity of urban land surface has still posed a great 
challenge to accurately estimate fractions of surface materials within a pixel. How to dealing with the highly spectral heterogeneous 
nature of urban land surface remains a scientific question. In this study, a comparison of different spectral mixture models was 
carried out to examine the performance of each model in dealing with spectral variability of urban surface. The comparison is 
focused on spectral normalized models and multiple endmember spectral mixture analysis (MESMA). Two spectral normalization 
algorithms, mean normalization and hyperspheric direction cosine (HSDC) normalization, were applied to Landsat ETM+ data 
acquired over Los Angeles, CA. A total of 170 spectral mixture models of two, three, and four endmembers were employed with 
MESMA. The reference data digitized from Arc2Earth was used to evaluated the mapping results. The results showed that MESMA 
is a promising tool to map abundances of urban surface components. Relative high mapping accuracies were achieved for vegetations 
and impervious surfaces. R2 and Root mean square error (RMSE) of vegetation fraction are 0.79 and 7.1%, respectively. The 
estimation of impervious surfaces obtained similar accuracy, with R2 0.72 and RMSE 10.7%. Both mean and HSDC normalized 
models made a notable improvement in mapping vegetation fraction and slight improvement in mapping impervious surface fractions, 
comparing with the standard SMA. Both two normalizations can only suppress spectral variation with similar spectral shape. HSDC 
is slightly better than mean normalization in reducing the effects of illumination and spectral variability of urban land surface. 
 
 

1. INTRODUCTION 

With the rapid population growth, urbanization has become a 
common trend all over the world since the 20th century. Urban 
land use and land cover (LULC) change has caused major 
concerns due to relevant environmental issues such as 
deforestation, air and water pollution, and urban heat islands. 
Therefore, monitoring the dynamic change of urban LULC has 
been imperative for understanding and managing urban 
environment, and remote sensing can provide effective means 
for such efforts. Moderate spatial resolution multispectral 
satellite remotely sensed data (e.g. Landsat MSS, TM, and ETM, 
SPOT HRV and HRVIR), in particular, have been widely used 
for this purpose due to their worldwide availability.  
 
A variety of algorithms have been applied to extract feature and 
property information of urban land surfaces, including the 
conventional statistic-based, neural network, rule-based, and 
object-based methods. However, the presence of spectrally 
mixed pixels has been a consistent challenge facing pixel-based 
approaches since mixed pixels tend to be misclassified.  For 
instance, a 30-m pixel in residential areas may contain lawn, 
roof, and drive way elements at the same time. Spectral mixture 
analysis (SMA), based on a physical mixture model, has ability 
to extract sub-pixel information such as the abundances of each 
endmember presented in the pixel (Adams, 1986; Adams et al., 
1993). For LULC types, the SMA models can be regarded as a 
linear combination of fractions of all endmembers (Adams et al., 
1995; Robert, et al., 1998). Numerous studies have 
demonstrated that linear spectral mixture analysis (LSMA) is a 
promising technique for the extraction of fractions of LULC 
types (Adams et al., 1995; Small, 2001, 2003, 2004; Wu and 
Murray, 2003; Wu, 2004; Powell et al., 2007). Small (2001) 

estimated urban vegetation abundance based on a LSMA with 
three endmembers, vegetation, high albedo, and low albedo 
surfaces. Wu and Murray (2003) focused on computing urban 
impervious surface using a conceptual model: vegetation, 
impervious surface, and soil component (VIS see Ridd, 1995). 
The high spectral variability of urban surface materials impedes 
the efforts of accurately extracting the abundances of land cover 
components (Small 2005). To suppress spectral variability of 
impervious surfaces, Wu (2004) first normalized pixel 
reflectance of each band with mean reflectance, and then 
applied LSMA to a normalized image. An alternative approach 
to address the high spectral heterogeneity of urban surface is the 
multiple end member spectral mixture analysis (MESMA see 
Roberts et al., 1998). Compared to traditional LSMA using a 
fixed number of endmembers for the entire scene, MESMA 
allows the number and types of endmembers to vary from pixel 
to pixel. Rashed et al. (2003) and Powell et al. (2007) 
demonstrated the potential of using MESMA to extract the 
abundances of urban surface components.  
 
The above studies have gained success to a certain degree in 
estimating abundances of urban surface materials. However, 
different approaches vary in dealing with spectral variation of 
urban surface types. There are two questions remaining 
unaddressed. First, how well does normalized LSMA reduce the 
effects of spectral variability and shade? Second, which 
approach has the best performance of handling spectral 
variability? In this study, several LSMA algorithms applied to 
Landsat ETM+ data of Los Angles, CA were examined for 
extracting the information of abundance of urban surface types: 
high albedo, low albedo, soil, and vegetation. These algorithms 
include standard LSMA, normalized LSMA, and MESMA. 
Two algorithms, normalized with mean reflectance (Wu, 2004) 
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and hyperspherical direction cosine transformation (HSDC: see 
Pouch and Campagna, 1990) were used for reflectance 
normalization.  
 
 

2. STUAY SITE 

The study site (Figure 1) is located in Los Angeles, CA. There 
are over eight million people in Los Angeles, the second largest 
city in the United States. Los Angeles is also famous with the 
most diverse culture in USA. The climate in Los Angeles 
belongs to a typical Mediterranean climate with hot, dry 
summer and wet, cool winter.  The natural vegetation includes 
grass, scrub, and chaparral. The study area includes Western 
Hollywood, South Pasadena, and Downtown Los Angeles. A 
wide variety of urban land use and land cover types present in 
the study area. It is an ideal test site for urban landscape 
analysis. 
 
 

3. DATA AND METHODS 

3.1 Data 

Landsat ETM+ data was acquired over the study site on May 1, 
2000, under a cloud free weather condition. A black and white 
digital orthphoto quadrant (DOQQ) with 1-meter spatial 
resolution acquired in 1996 was 
 
 

 
 

Figure 1. Study site of Los Angeles (Landsat ETM+ false Color 
composite) 

used for image rectification. A 1-foot spatial resolution true 
color aerial imagery data from Arc2Earth, a new product that 
allows users to visualize spatial data from Google Earth within 
ESRI’s ArcGIS, was used for extraction of reference data. The 
true color aerial imagery was acquired in 2004.  
 
3.2 Data preprocessing 

The image rectification, conversion of digital number to 
radiance, and the conversion of radiance to surface reflectance, 
were performed to ETM+ data. 96 ground control points from 
the whole scene were collected for image rectification. A 
second order of polynomial transformation was applied to 
ETM+ data resulting the root mean square error around 20 

meter. The digital numbers of image pixels were converted to 
radiance following a routine procedure proposed by Markham et 
al. (1997). A reflectance retrieval algorithm modified from the 
routine procedure developed by Markham et al. (1997) was used 
to retrieve surface reflectance in which the atmospheric effect 
was taken into consideration (Chuvieco et al. 2002). For 
atmospheric correction, the atmospheric path radiance was 
estimated from dark object (deep water) whereas the 
atmospheric transimissivity was simply regarded as function of 
the cosine of the zenith angle (Chavez, 1996).  
 
3.3 Endmember collection 

 
For all LSMA, endmembers were selected following the routine 
procedures: 1) minimum noise fraction (MNF) transformation 
(Green et al., 1988) was  
 
 

 

 

 
 
Figure 2. Scatter plots of three MNF components upper: regular 

ETM+ data; middle:  mean normalized data; lower: HSDC 
normalized data 

 
applied to ETM+ reflectance data in order to reduce data 
dimensionality and suppress the noise in the data; 2) pixel 
purity index (PPI, see Boardman et al., 1995) was calculate; 3) 
the relative pure pixels whose PPI are greater than threshold 
defined by users were plotted on n-dimensional feature spaces 
and the extreme pixels on scatter plot were selected as 
endmembers.  For standard LSMA, four endmembers such as 
high albedo surface, low albedo surface, vegetation, and soil, 
were chosen (Figure 2). There were only three endmembers 
chosen for normalized LSMA – impervious surface, vegetation, 
and soil. The endmember selection of MESMA was based on 
the results of standard LSMA. Pixels with high residue were 
checked using Arc2Earth with assumption that inappropriate 
endmembers may result in high residues. There were a total of 
nine endmembers collected for MESMA, including white roof, 
red roof, concrete surface, asphalt surface, fresh asphalt surface, 
grass, wood, soil, and deep shade/water. 
 
3.4 SMA Models 

3.3.1 Standard LSMA The standard LSMA is 
expressed as Equation 1 in which the reflectance of each pixel 
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can be decomposed into linear composition of endmembers 
weighed with their fractions and the residue assuming multiple 
back scatter effects are negligible (Adams, 1986; Adams et al., 
1993).  
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Where Rλ = the reflectance at band λ 

  fi  = the fraction of endmember i 
 Riλ = the reflectance of endmember i at λ 
 N = the number of endmembers 
 eλ = the residue at λ.  

 
3.3.2 MESMA  MESMA is a specific type of 
LSMA. Unlike standard LSMA, MESMA applies different sets 
of endmembers to LSMA model instead of a complete set of 
endmembers (Roberts et al., 1998).  MESMA models vary from 
pixel to pixel. In this study, there were total 170 two-
endmembers, three-endmembers, and four-endmembers models 
applied. The best model was determined based on its RMSE.  
 
3.5 Spectral normalization 

3.3.2 Mean normalization Mean normalization is 
proposed by Wu (2004) to reduce the effects of spectral 
variation for LSMA. It is expressed as following equation 2 and 
3: 
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Where m = the mean of reflectance in all bands 
Ri  = reflectance at band i 
N = the number of bands 

iR  =normalized reflectance at band i 
 
3.3.2 HSDC normalization HSDC is developed by 
Pouch and Campagna (1996) to suppress illumination effects 
and albedo variations. It is assumed that the radiance of pixel 
contains two components: illumination/albedo and spectral. 
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Where R = illumination/albedo component 

Ri  = reflectance at band i 
N = the number of bands 

iR  =normalized reflectance at band i 
 
The illumination/albedo component is calculated based on 
equation 4. Equation 5 was used to normalize the reflectance at 
each band.  
 
3.6 Models assessment 
 
The model accuracies were assessed by referring to ground 
samples. 120 samples were selected randomly from the entire 
study area. Each sample covers 150×150 meter of surface in 
order to reduce the effects of geometric error, which is about 20 
meter. The reference data of each sample were collected from 1-
foot spatial resolution natural color aerial image using 
Arc2Earth. Four surface types such as high albedo, vegetation, 
soil, low albedo surface were digitized using ESRI’s ArcGIS. 
Each category of urban land surface was summarized through 
ArcGIS geodatabase. The model predicted surfaces of each 
sample were compared with the reference information through a 
correlation analysis. 
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Figure 3. Impervious surface scatter plot of LSMA 
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Figure 4. Vegetation scatter plot of LSMA 
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Figure 5. Impervious surface scatter plot of MESMA 
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Figure 6. Vegetation scatter plot of LSMA 
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Figure 7. Impervious surface scatter plot of Mean normalized 

LSMA 
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Figure 8. Vegetation scatter plot of Mean normalized LSMA 
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Figure 9. Impervious surface scatter plot of Mean normalized 
LSMA 
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Figure 10. vegetation scatter plot of Mean normalized LSMA 
 
 

4. RESULTS AND CONCLUSIONS 

The results of assessment showed that MESMA achieved the 
highest overall accuracy among all methods. It is not surprising 
that the spectral variations in high and low albedo surfaces can 
be captured with MESMA models. . Relative high mapping 
accuracies were achieved for vegetations and impervious 
surfaces. R2 and RMSE of vegetation fraction are 0.79 and 7.1%, 
respectively (Figure 3, 4, 5, 6). The estimation of impervious 
surfaces obtained similar accuracy, with R2 0.72 and RMSE 
10.7%. Both mean and HSDC normalized models made a 
notable improvement in mapping vegetation fraction and slight 
improvement in mapping impervious surface fractions, 
comparing with the standard SMA (Figure 7, 8, 9, 10). Both two 
normalizations can only suppress spectral variation with similar 
spectral shape. HSDC is slightly better than mean normalization 
in reducing the effects of illumination and spectral variability of 
urban land surface. 
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