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ABSTRACT: 
 
Mixed pixels, which are inevitable in remote sensing images, often result in a lot of limitations in their applications. A novel 
approach for mixed pixel’s fully constrained unmixing, Fully Constrained Oblique Subspace Projection (FCOBSP) Linear Unmixing 
algorithm, is proposed to handle this problem. The Oblique Subspace Projection, in which the signal space is oblique to the 
background space, is introduced to the settlement of the Linear Mixture Model (LMM). The abundance of constitutional spectral 
signature can be obtained through projecting the mixed pixel to the spectral signature subspace. One of the two well-known 
constraints of LMM, namely the non-negative constraint, is met by projecting mixed pixels to continually modified background 
space. The other constraint, namely the sum-to-one constraint, is embedded into the LMM to realize fully constrained linear 
unmixing.  The performance of the proposed algorithm is evaluated by synthetic multispectral pixels decomposition. Compared with 
the popular Fully Constrained Least Square unmixing (FCLS) algorithm and Oblique Subspace Projection (OBSP), in terms of both 
RMSE and correlation coefficient with the real abundance, the proposed algorithm achieves significant improvement over these 
algorithms in spite of a little more time cost. The proposed algorithm has been used to handle the practical classification problems 
which dealing with the real multispectral and hyperspectral data, and the decomposition results show that the objects are well 
separated.  
 
 

                                                                 
* Corresponding author.   

1. INTRODUCTION 

Multispectral/hyperspectral remote sensing with characteristic 
of detailed spectral information has been widely utilized in 
many different areas such as land resource management, 
investigation of the forest vegetation, cultural relic protection, 
and so on (A. J. Tatem, 2003; Jiangtao, 2000; Gene, 2000; 
Mingyi He, 2007; Rui Huang and Mingyi He, 2005). Since the 
area that one pixel covers in a multispectral and/or 
hyperspectral image is usually pretty large (about 900 m2 for 
NASA Landsat or 1.2 km2 for NOAA-7) (Jun-Hua, 2004), one 
pixel usually contains more than one surface component, which 
often results in a mixture of these surface components. The 
mixed pixel problem not only influences the precision of object 
recognition and classification, but also becomes an obstacle to 
quantitative analysis of remote sensing images. This problem 
can be tackled by precisely obtaining the percentage of the 
objects contained in the mixed pixel. In fact, the exact 
decomposition of mixed pixels is of great importance in the 
field of sub-pixel classification of multispectral and 
hyperspectral remote sensing image as well as detection and 
identification of ground objects (Bin, 2005). 
 
Charles Ichoku summarized the mixed pixel model into the 
following five types (Charles, 1996): the Linear Mixture Model 
(LMM), the Probabilistic Model, the Geometric Model, the 
Stochastic Geometric Model and the Fuzzy Model, in which the 
LMM is well known for its simple structure and clear physical 
meaning. Many mixed pixel unmixing algorithms based on the 

LMM have been applied to practical application, in which the 
least square algorithm is one of the most popular algorithms. 
Zhu Shulong used the least square method to solve the linear 
mixed model for mixed-pixel image classification (Zhu, 1995). 
Daniel Reinz etc. raised fully constrained least square unmixing 
algorithm to solve the minus abundance problem for material 
quantification (Daniel, 1999; Daniel, 2001). Recently, subspace 
projection has been introduced to the mixed pixel unmixing 
problem. The orthogonal subspace projection (OSP) method 
projects the signal to the space which is orthogonal to the 
background space to obtain the signal component by removing 
the background spectral component. Harsanyi and Chein-I etc. 
applied the OSP to hyperspectral image classification, 
dimension reduction and feature extraction, respectively (J. C. 
Harsanyi, 1994; Chein-I, 2005). The oblique subspace 
projection (OBSP) method, in which the desired signal 
subspace and the background subspace are oblique to each other 
for enhancing the desired signal as well as removing the 
background interference as much as possible, has been widely 
used in narrowband array processing, narrowband spectrum 
analysis, and so on (Richard, 1994). Chein-I etc. has already 
used OBSP algorithm to the mixed pixel classification (Chein-I, 
1998). However, when using the OBSP to decompose the 
mixed pixel, the decomposition abundances can not meet the 
required two constraints imposed on LMM, namely non-
negative and sum-to-one constraints, resultantly  which can not 
be applied to the quantitative analysis of remote sensing. In this 
paper, a fully constrained oblique subspace projection mixed 
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pixel unmixing algorithm is proposed to solve this problem. 
The minus abundance problem is conquered by modifying the 
endmember space to represent the constitution of the mixed 
pixel accurately. Experiments on synthetic spectral data, 
multispectral data and hyperspectral data are conducted 
separately to validate the algorithm. 
 
 

2. LINEAR MIXTURE MODEL 

The sketch map of the satellite remote sensing is shown in 
Figure 1. Due to the spatial resolution limitation, mixed pixel 
which contains energy reflected from more than one type of 
target in the remote sensing image are widely present. The 
mixed pixel is the consequence of many ground objects 
appearing in different proportions. In the LMM, the spectral 
response of mixed pixel is assumed to be the linear combination 
of the constitutional pure ground objects’ signature and their 
ratios respectively. Generally, the pure ground objects 
contained in the mixed pixel is known as the endmember, while 
the corresponding ratio is known as the abundance. Therefore, 
the spectral reflection value of mixed pixel is the linearly 
weighted sum of spectral signature reflected from the 
inhomogeneous materials. 
 
 

 
Figure 1. The sketch map of the satellite remote sensing 

 
Let ( )T

1 2, , , br r r=r  be the mixed pixel vector in the 
multispectral/hyperspectral remote sensing image. Let matrix  

( )1 2, , , pM = m m m  be the endmember matrix, where 

( )1 2, , ,
T

j j j bjm m m=m ( )1, 2, ,j p=  is the j-th endmember of the 
mixed pixel, b is the band number, and p is the number of 
endmember contained in the mixed pixel. Let ( )1 2, , ,

T

pα α α=α  be 
the corresponding abundance vector, where ja  is the abundance 
of the j-th endmember in the mixed pixel. Based on the linear 
mixing theory mentioned above the spectral signature of a 
mixed pixel can be represented by the linear regression model 
as follows: 

1

p

j j
j

M m α
=

= + = +∑r α n n                           (1) 

where n is a 1b×  column vector representing an additive white 
Gaussian noise with zero mean and variance 2Iσ , and I is the 
b b×  identity matrix. 
 
Generally, the sum-to-one constraint and the non-negative 
constraint must be imposed in the expression to provide the 
LMM with adequate physical meaning, which can be expressed 
as follows: 

1

1
p

j
j

α
=

=∑                                      (2) 

0 1, 2, ,j j pα ≥ =                        (3) 
 
 

3. THE OBLIQUE SUBSPACE PROJECTION 

Let F  and S  be two subspaces of the n-dimension space nC . 
The transformation which projects arbitrary x  contained in nC  
to the subspace F  along S  is known as the projection along S  
to F . Let ,PF S  be the projection operator along S  to F , so we 
have 

, ( ) ,P = ∈ ∈x y x yF S F S                   (4) 
Let P be the projection matrix of the projection operator ,L MP , so 
P must be idempotent, which means it must equal to its own 
square: 

2P P=                                         (5) 
 

If the subspace F  is orthogonal to the subspace S , the 
projection ,L MP  is known as orthogonal projection. As for the 
oblique projection, the subspace F  is oblique to the subspace 
S . In other words, F  is disjoint to S  . Based on the projection 
theory aforementioned, for an oblique projector HSE  whose 
range is H  and whose null space contains S , we have 

2

H H
S 0

HS

HS

HS HS

E
E

E E

⎧ =
⎪

=⎨
⎪ =⎩

i
i                                       (6) 

The geometric figure of projector HSE  is shown in Figure 2. 
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Figure 2. The geometric figure of oblique projection 
 

Assume that H is a complex matrix of size n m×  having full 
column rank and, likewise, assume that S is a complex matrix of 
size n t×  having full column rank. Further assume that H  
and S  is disjoint, which requires m t n+ ≤ . For an oblique 
projector HSE  whose range is H  and whose null space 
contains S , we have (Richard, 1994) 

1 HH H

HS H H H

HH H H S
E (H 0)

S H S S S

−
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
                   (7) 

Obviously, HSE  meets formula (6), and HSE  is an oblique 
projection matrix. 
 
Equation (7) for the oblique projector HSE  can be simplified to 
either of the following: 

( ) 1H H
HS S SE H H P H H P

−⊥ ⊥=                (8a) 
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( )( )1H H
HS H H HE P I S S P S S P

−⊥ ⊥= −                (8b) 

where, 
H -1 H

H H H, ( )P I P P H H H H⊥ = − =                   (9) 
-1, ( )H H

S S SP I P P S S S S⊥ = − =                    (10) 
 

HP  is the orthogonal projector whose range is H  while HP⊥  is 
the orthogonal projector whose range is H ⊥ . Similarly, SP  is 
the orthogonal projector whose range is S  and SP⊥  is the 
orthogonal projector whose range is S ⊥ . 
 
 

4. THE OBLIQUE SUBSPACE PROJECTION BASED 
UNMIXING OF MIXED PIXEL 

In the space constituted by the endmember M , let endmember 
( )1, 2, ,j jH m j p= =  be the signal’s spectral space which only 

contains the concerned spectral signature and other endmember 
1, , , ,j i pS m m m=  ( 1, 2, , ; )i p i j= ≠  be the background space. 

Therefore we have, 
1,2,j jM H S j p= =                   (11) 

Let jE  be the oblique projector whose range is jH  and null 
space contains jS . It can be obtained by formula (8a) and (8b). 
Applying oblique projector jE  to the LMM of mixed pixel 
defined by formula (1) yields 

( )

j j

j j

j j j j

j j j j

j j j

o E

E M E

E H S E

E H E

H E

α

α

=

= +

= +

= +

= +

r

α n

α n

n

n

                    (12) 

where jo  is the oblique projection of the mixed pixel to the 
signal space jH , which is denoted as the oblique projection of 
endmember jH . 
 
Regardless of the influence of the Gaussian noise, the oblique 
projection of the endmember jH  is given by 

j j jo H α=                                   (13) 
 
By using of the generalized pseudo matrix of jH , the abundance 
of endmember jH in the mixed pixel r  can be derived by 

( )
( )
( )

1

1

1

j j

T T
j j j j j

T T
j j j j

T T
j S j j S

H H H o

H H H E

H P H H P

α
−

−

−
⊥ ⊥

=

=

=

r

r

                        (14) 

 
 

5. FULLY CONSTRAINED OBLIQUE SUBSPACE 
PROJECTION TO MIXED PIXEL LINEAR UNMIXING 

Taking the two constraints of the mixed pixel model into 
account during the process of the mixed pixel oblique 
projection unmixing, the fully constrained decomposition can 
be reached. 
 
5.1 The Sum-to-one Constraint 

For analysis convenience, denote 0 1 2 pδ α α α= + + + , 
equation (1) is modified as: 

11 11 1
1

1

0 1 1 0

p

pb b bp
p

nr m m

nr m m

α

α
δ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

        (15) 

 
Considering the sum-to-one constraint, the LMM can be further 
modified as follows: 
 

11 11 1
1

1

0

p

pb b bp
p

nr m m

nr m m

α

α
δ δδ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

                  (16) 

whereδ is the trade-off between the Sum-to-one constraint and 
the LMM. Applying the Oblique Projection Approach to the 
modified LMM defined by formula (16), the abundances could 
meet the sum-to-one constraint.  
 
5.2 The Non-negative Constraint 

As all the endmember of the remote image is usually not totally 
contained in one certain pixel, using the oblique projection to 
decompose the mixed pixel based on the assumption that all the 
endmember are contained in the pixel, may produce negative 
projection, which makes the abundance less than zero and can 
not meet the non-negative constraint of the LMM. Accordingly, 
it is crucial to know the precise endmember constitution of one 
certain mixed pixel. Based on the iterative method (Daniel, 
2000), the background space can be continually modified by 
wiping off the spectral signature which corresponds to the 
largest minus projection from the endmember space in order to 
get the precise constitution of the pixel. The abundance can be 
achieved by repeating the iterative process until all the 
abundances meet the non-negative constraint. The detail 
algorithm is as follows: 
 

Step 1: Calculate the abundance of each spectral signature in 
the mixed pixel by formula (14). 

Step 2: If all the abundance of the spectral signature contained 
in the mixed pixel is nonnegative, which means 

( )0 1,2, ,j j pα ≥ = , the precise endmember constitution is 
obtained and the correct decomposition result is 
determined. Otherwise, turn to step 3 to modify the 
endmember constitution. 

Step 3: Find out the biggest minus abundance, and let it be 0. 
Then modify the endmember constitution by wiping off 
the corresponding spectral signature from the endmember 
matrix to get the new endmember matrix composed by the 
residual spectral signature. Turn to step 1 and use the new 
endmember matrix to decompose again. 

 
The proposed fully constrained oblique projection (FCOBSP) 
algorithm requires a maximum of -1p  iterations and terminates 
when the correct endmember constitution is obtained. 
 
 

6. EXPERIMENTS 

In this section, several experiments are conducted on synthetic  
multispectral pixels, Landsat-7 multispectral images, and 
hyperspectral images separately to validate the proposed 
FCOBSP algorithm. 
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6.1 Experiments on Synthetic Multispectral Data 

The typical signature obtained by Landsat-7 is used as 
endmember to simulate multispectral mixed pixels to evaluate 
the performance of the proposed Fully Constrained Oblique 
Subspace Projection (FCOBSP) Linear Unmixing algorithm 
against the popular Fully constrained least square (FCLS) 
algorithm (Daniel, 2001b) and Oblique subspace projection 
(OBSP) algorithm (known as OBC of Chein-I, 1998b). The 
reflected spectrum of four ground objects including building, 
swamp, water, and road with spectral range 529-920nm shown 
in Figure 3, are adopted. Therefore, the endmember matrix 

( )1 2 3 4= , , ,M m m m m  consisted of four spectral signatures with 
abundance fractions given by ( )T

1 2 3 4, , ,α α α α=α . The multi-
spectral pixel simulation method is the same with it considering 
in Daniel’s paper (Daniel, 1999). When simulating the 
multispectral pixel, we started the first pixel vector with 100% 
building and 0% other ground objects, and then began to 
decrease 1% building every pixel vector until the 100th pixel 
vector which contained 1% building. Correspondingly, the 
other components of swamp, water, and road totally increase by 
the increment of 1%, where the increment ratio among them is 
5:3:2, which means the swamp increases from 0 to 50% by the 
increment of 0.5%, the water increases from 0 to 30% by the 
increment of 0.3%, and the swamp increases from 0 to 20% by 
the increment of 0.2%. White Gaussian noise is added to each 
pixel vector to achieve a 50:l signal-to-noise ratio (J. C. 
Harsanyi, 1994). 
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Figure 3. Four ground objects typical spectrum of Landsat-7 
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Figure 4. The decomposition results of the three algorithms 
(SNR=10dB) 

Figure 4 shows the simulated multispectral pixel decomposition 
results of applying the FCOBSP, FCLS, and OBSP algorithms 
at the SNR level of 10dB respectively. It should be noted that 
the outputs in Fig.4 were plotted in real ranges of abundance, 
e.g. [0,1]. The comparisons between FCOBSP and other 
methods in the aspects of the root-mean-square error, 
correlation coefficient, and time cost are shown in Table 1. The 
root mean square error (RMSE) and correlation coefficient 
between estimated abundance and real abundance are defined 
by formula (17) and (18) respectively.  

( ) 2 2
estimate real estimate real

1 1 1

( ) /
p p p

i i i

Cor α α α α
= = =

= ×∑ ∑ ∑       (17) 

( )2
estimate real

1

p

i

RMSE α α
=

= −∑                        (18) 

The computer with Pentium 4 at 3.20GHz CPU and 512M 
RAM is taken to measure the time cost. 
 

 Root Mean 
Square Error

Correlation 
Coefficient Time Cost /s

FCOBSP 0.0897 0.9038 0.047 
FCLS 0.1061 0.8849 0.031 
OBSP 0.1480 0.8256 0.016 

 
Table 1. The performance of the three algorithms 

 
It can be deduced from Table 1 that: 
 
(1) The FCOBSP algorithm, which gets the least root mean 
square error and the largest correlation coefficients with the real 
abundance fractions, is better than the other two algorithms in 
spite of a little more time cost. Although the OBSP algorithm 
spend less time than FCOBSP, it may lead to minus abundance 
fractions, which may not meet the linear mixed model and can 
not be applied in the quantitative analysis of remote sensing 
images. The FCOBSP algorithm confines the fraction of 
abundance to [0,1], and the sum of those abundances is 
restricted to one to meet the LMM.  
 
(2) Although the FCLS algorithm can also confine the 
abundance fractions to [0, 1], the FCOBSP possesses more 
accurate decomposition results in the aspects of the least root-
mean-square error and the correlation coefficients with real 
results.  
 
Figure 5 shows the correlation coefficients between the 
estimated abundance and the real simulated abundance at 
different noise level. Obviously, the decomposition results by 
using FCOBSP are more accurate than the other two algorithms 
especially when the SNR is low. 

 
 

0 5 10 15 20 25 30 35 40 45 50
0.88

0.9

0.92

0.94

0.96

0.98

1

C
or

re
la

tio
n 

co
ef

fic
ie

nt

SNR(db)

FCOBSP
FCLS
OBSP

 

Figure 5. The decomposition correlation coefficient  
at different noise level 
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6.2 Experiments with Landsat-7 Multispectral Images 

In this section, a real multispectral scene of Shenzhen area of 
China, collected by the Landsat-7 satellite, is adopted to show 
the performance of the proposed algorithm. The scene consists 
of 7 bands covering a spectral range 529-920nm. However, only 
bands from 1 to 5 together with band 7, the spatial resolution of 
which is 30m, are selected, for band 6 at a different spatial 
resolution is for other use. Figure 6 shows a Landsat-7 false 
colour  image of this area,  with the band 1 displayed as red, the 
 
 

 

Figure 6. The false color image of Shenzhen 
 
band 3 as green, and the band 5 as blue. Ground objects such as 
water, building, swamp, and road etc. are contained in this area. 
The experiment chooses 6 endmember whose spectral curves 
are shown in Figure 7 to apply to the FCOBSP algorithm. The 
decomposition results of the proposed algorithm, denoted by 
abundance gray image, are shown in Figure 8. In these images, 
pure black denotes that the percentage of a certain sort of object 
in this pixel is 0, while pure white denotes 1. Obviously, the 
proposed algorithm is successful in decomposing the Landsat-7 
multispectral images into 6 ground objects. 
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Figure 7. The typical spectral of Shenzhen 

 
 

 

 
Figure 8. The decomposition result of Shenzhen 

6.3 Experiments with Hyperspectral Images 

In the final experiment, the proposed algorithm is applied to a 
hyperspectral scene of the Jasper Ridge area located in 
California of USA on Jul 18th, 2000. The scene consists of 
512 600×  pixels, each containing 60 bands covering the 
spectrum ranging from 441.0nm to 1320.8nm. The total 60 
bands are selected. Figure 9 shows a false color image of this 
area, with the band 1displayed as red, the band 20 as green, and 
the band 30 as blue. As shown in Figure 10, this area mainly 
includes 5 kinds of typical ground objects: water, vegetation, 
and 3 kinds of soil (includes road). By using these 5 kinds of 
ground objects as endmember, the decomposition result of 
applying the proposed algorithm is shown in Figure 11. Based 
on the fractional gray images, the five ground objects are well 
separated. 
 
 

 
Figure 9. The false color image of Jasper Ridge 
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Figure 10. Typical spectrum of Jasper Ridge 

 

 
a. Veg 3                b. Soil 3                 c. Soil 4 

 
d. Soil 6               e. Water 

Figure 11. The decomposition results of Jasper Ridge 
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7. CONCLUSION 

In this paper, a novel approach for mixed pixel’s fully 
constrained unmixing has been developed and demonstrated. 
The algorithm firstly uses the oblique projection to decompose 
the mixed pixel and then iterates to realize the fully constrained 
decomposition. The oblique projection, which projects signal to 
the subspace oblique to a low rank subspace, can eliminate the 
noise as well as enhance the desired signal as much as possible. 
Based on the LMM, the abundance of spectral signature can be 
obtained by using the oblique projection, which means 
projecting the pixel vector to the signal subspace which is 
oblique to the background and noise subspace. The FCOBSP 
algorithm adjusts the abundance to meet the constraints of the 
LMM by repetitiously projecting mixed pixel to continually 
modified background space. The synthetic experiment provides 
that, compared with the other popular mixed pixel unmixing 
algorithm such as OBSP and FCLS, the FCOBSP gets the least 
root mean square error and the largest correlation coefficients 
with the real abundance fractions, and is better than other 
algorithms although a slightly more time cost. The FCOBSP 
mixed pixel unmixing could be generalized to apply to wider 
applications dealing with multispectral and/or hyperspectral 
images. 
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