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ABSTRACT: 
 
It is important to explore the ability of Bidirectional Reflectance Distribution Function (BRDF) to improve classification accuracy 
using MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF and albedo products. This paper examines the utility of 
including MODIS BRDF products as additional input features to a decision tree classifier (c4.5). Our results show that 
supplementing MODIS BRDF parameters (f_vol and f_geo) with Nadir BRDF-Adjusted Reflectances (NBAR) and Enhanced 
Vegetation Indexes (EVI) increases overall classification accuracy by 3.02% to 4.72%, and reduces misclassification rates by 15% to 
22%, depending on how many BRDF parameters are added (fourteen vs. four), and if these BRDF parameters are normalized by 
their isotropic parameters (f_iso). The greatest improvements are seen for Wetland shrub with user and producer’s accuracy 
increased by up to 15.05% and 8.18% respectively. Increases on the order of 5% to 10% are encountered for the Wetland tree, 
Coniferous dense and Coniferous open with no detriments to other candidate classes. However, adding MODIS BRDF shape 
indicators produces little improvements in classification accuracy in this study.  
 

1. INTRODUCTION 

Several publications explored that multiple-view-angle (MVA) 
remotely sensed images have information content related to 
land cover classification (Barnsley et al., 1997; Hyman et al., 
1997). Land surface BRDF measurements acquired from 
POLDER instrument onboard the ADEOS-1 satellite with 6km 
spatial resolution showed large differences of the directional 
and spectral signatures of the various land cover classes, both in 
shape and in magnitude, implying their potential use in 
discriminating different land cover types (Bicheron and Leroy, 
2000). Classification of multispectral and multiangle 
measurements using airborne Advanced Solid-State Array 
Spectoradiometer (ASAS) and POLarization and Directionality 
of Earth Reflectance (POLDER) was performed by Abuelgasim 
et al (1996) and Bicheron et al (1997), demonstrating that the 
account of directional information enhances the ability to 
discriminate forest covers.  
 
Until recently, some research on constructing angular indexes 
to explore both physical mechanisms of hyperspectral BRDF 
effect and their relationship to land cover types using several 
typical ground measurements were documented by Sandmeier 
al et. (1998). The conclusion was that addition of angular 
indexes to hyperspectral data increases the overall classification 
accuracy. Another line results from use of angular index to 
retrieve the vegetation clumping index based on computer 
simulation, showing that some angular indexes such as 
normalization between hotspot and dark spot (NDHD) are 
lineally related to foliage clumping index for different 
vegetation types observed by the space-borne POLDER sensor. 
Global clumping index maps were subsequently produced using 
POLDER data (Chen, et al., 2005).  
More recently, another line arises from constructing angular 
indexes based on semiempirical BRDF model to retrieve 
vegetation structure of a land surface, and relate these angular 

indexes to different vegetation types (Roujean, 1997; 
D’Entremont, 1999; Pinty, 2002; Gao, 2003). Adding BRDF 
features along with multispectral signatures to a classification 
algorithm is a practical application because so far, global land 
cover maps constructed from space-based remote sensing data 
such as AVHRR, SPOT-Vegetation, and MODIS are only based 
on multispectral signals and the change in those multispectal 
signals through an annual cycle (Strahler et al. 2006). 
Directional signals have been excluded from global operational 
classification algorithm, although MODIS land cover product 
algorithm has once considered including BRDF features (Friedl, 
et al., 2002). It remains experimental that the BRDF features 
can improve classification accuracy as complementary 
information. 
 
Most recently, continental and global classification experiment 
supplementing BRDF matrices with multispectral signatures 
from POLDER at coarse spatial resolution (7×6km) shows that 
BRDF features improve overall classification accuracy as 
compared to the results without them (Brown de Colstoun, E. C. 
B. et al., 2006). An experiment using Multi-angle Imaging 
Spectro-Radiometer (MISR) data shows that surface anisotropy 
patterns can improve desert vegetation type differentiation (Su 
et al, 2007). However, assessing ability of BRDF signatures as 
additional features of spectral signatures to improve the 
classification accuracy has never been conducted in context of 
MODIS at 500m spatial resolution. The specific objective of 
this work is to apply the MODIS BRDF features related to land 
cover types to improve the classification accuracy derived from 
supervised classification algorithm, which may otherwise be 
difficult to acquire with spectral signatures alone. 
 
To assess the ability of these BRDF features to classification, 
we performed a set of analyses using decision trees to classify 
two data sets of composited BRDF features together with 
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NBAR and EVI. The first data set includes eight MODIS BRDF 
shape indicators, a set of angular indexes developed to indicate 
BRDF shape in MODIS and was explored to be related to land 
cover types (Gao, 2003). The second data set is to supplement 
MODIS BRDF parameters including volumetric and geometric 
parameters with spectral input features. As part of our analysis 
we also test the utility of MODIS volumetric and geometric 
parameters normalized by isotropic parameters, and the 
conditions where 14 MODIS BRDF parameters in seven bands 
are reduced to 4 parameters in red and near infrared waveband. 
Our results show that the MODIS BRDF parameters are 
effective for land cover classification problems, but that the 
contributions of including MODIS BRDF shape indicators on 
classification are very modest. Further we find that the 
volumetric and geometric parameters normalized by the 
isotropic parameters are especially useful for some sparse/open 
classes in the study region. 
 
 

2. STUDY REGION 

The very large area extent of the northern latitude boreal forest 
biome has a significant impact on the Earth’s energy balance 
and the associated surface atmosphere exchange of radiation, 
heat, water, momentum, and carbon dioxides. Research on 
boreal forest biome from a large multiyear internationally 
supported study-Boreal Ecosystem Atmosphere Study 
(BOREAS) during and after the main field campaigns (1994 
and 1996) improves our understanding of the boreal forest 
biome in both vegetation structure and land-cover classification. 
Therefore, it is a significant effort to examine the ability of the 
BRDF features related to vegetation structures, to improve 
classification accuracy together with spectral signatures, 
especially using 500m operational MODIS BRDF/Albedo 
products in this study region. 
 
The Canadian boreal forest forms a band almost 1000 
kilometers wide sweeping southeast to Newfoundland and 
Labrador, and spanning from its north of the tree line to the 
south bordered by various land cover types especially the 
transition from tree to herbaceous (Figure 1). The study region 
is located to the middle-east of Alberta in Canada, and was 
chose to represent the typical land cover types varying from 
herbaceous to forest with wet /dry background, distinct 
vegetation structure (clumping vs. random) and varying tree 
density (open vs. close). The study region has been well 
classified with mosaicked Landsat Enhanced Thematic Mapper 
Plus (ETM+) images by Earth Observation for Sustainable 
Development of Forest (EOSD), a joint program of the 
Canadian Forest Service (CFS) and the Canadian Space Agency 
to develop a forest monitoring system for Canada.  
For the study region, the derived classification map 
compromises twelve scenes of ETM+ imageries with orbit ID 
and acquired date shown in table1 and represents around year 
2000 conditions at 25m spatial resolution. Based on this 
classification map, we select training and testing samples and 
perform a set of analyses using decision trees to classify a set of 
compoisted MODIS BRDF/Albedo data. The main acquired 
date of the ETM+ imageries are around August, 1999-2001 in 
the study region. To match the time provided by high resolution 
ETM+ images, we composite 23 daily-rolling MODIS 
BRDF/Albedo products every16 days on August (Julian day of 
202 to 224) in 2001 into a high quality full inversion data sets 
to examine the questions addressed in this paper. The method to 
composite MODIS BRDF and albedo products will be 
explained in next section. 

 
Figure1. The title should appear cente Figure 1 Map of the 

Canadian boreal forest, showing the study region in red 
rectangle 

 
 

3. DATA AND METHODS 

3.1 MODIS BRDF/Albedo products and processing  

MODIS BRDF/Albedo products include directional 
hemispherical albedo (black-sky albedo), bihemispherical 
albedo (white-sky albedo), Nadir BRDF-Adjusted surface 
Reflectance (NBAR), model parameters describing the BRDF, 
and extensive quality assurance information. MODIS BRDF 
shape indicators are among model parameters products, 
occupying one Science Data Sets (SDS) layer.  
 
The operational Version 005 MODIS BRDF and albedo 
algorithm uses a linear three-parameter semiempirical Ross 
Thick-LiSparse-Reciprocal (RTLSR) BRDF model to 
characterize the anisotropic reflectivity of the land surface 
(Lucht et al., 2000). Cloud-free atmospherically-corrected 
surface reflectances are accumulated during each 16 day period, 
from which the BRDF parameters are first retrieved if there are 
seven clear looks or more and observations fit the BRDF model 
well during a 16 day period. This process is so-called full 
inversion. A backup magnitude inversion is implemented if 
angular samples are greater than two and less than seven or if 
the internal quality check indicates a low confidence in the 
retrieval with the main algorithm since observations are not 
well sampled or do not fit the BRDF model well. A fill value is 
stored if the number of good observations is less than three. The 
MODIS BRDF shape indicators are only valid for full inversion 
retrieval, so there seem more gaps in BRDF shape indicator 
products than other BRDF and albedo products, resulting in a 
main problem in acquiring sufficient high quality input data 
from single MODIS BRDF shape indicator on each 16 day 
period. In this study, to match the time of high resolution 
ETM+ map, we use the MODIS BRDF/Albedo products in the 
year of 2001 when only Terra instrument is available. This 
could result in more gaps for MODIS BRDF shape indicators 
on one 16 day period than that derived from both Terra and 
Aqua. 
 
To solve this problem, we first drive the operational MODIS 
BRDF/Albedo codes (PGE23) to produce twenty-three (Julian 
day of 202 to 224 in 2001) daily-rolling BRDF and albedo 
products on 16 day periods, and then composite them to achieve 
one high quality MODIS BRDF and albedo products. To do this, 
all high quality data in the MODIS BRDF/Albedo products on 
the last 16 day periods (Julian day of 224 here) was retained, 
and then the gaps in these images was filled with high quality 
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data from the images of the preceding 16 day periods (Julian 
day of 223 here), and this iteration continues until the images of 
the first 16 day periods (Julian day 202 here). With this method, 
most gaps presented in the baselined images were filled with its 
preceding corresponding products, and so on. The EVI, which 
has been used as inputs in current MODIS land cover products, 
was also calculated from composited NBAR products. 
 
As part of our analysis, we also use the fourteen composited 
volumetric and geometric parameters normalized by isotropic 
parameters in seven spectral bands. Therefore, the MODIS 
BRDF features examined in this study include both eight BRDF 
shape indicators and the MODIS BRDF parameters. The latter 
comprises not only the original volumetric and geometric 
parameters, but also these parameters normalized by isotropic 
parameters. Further, we examine the conditions where only four 
volumetric and geometric parameters in red and NIR band were 
supplemented with spectral features. The MODIS BRDF shape 
indicators are composed of model-based indicators and 
reflectance-based indicators. The former is constructed from 
MODIS BRDF parameters, and the latter is constructed from 
simple algebraic combination of reflectance in typical angle 
such as nadir, hot spot and dark spot. 
 
3.2 Decision tree classifier 

The most important feature of decision tree classifiers is their 
capability to break down a complex decision-making process 
into a collection of simpler decisions, thus providing a solution 
which is often easier to interpret. For various mostly practical 
reasons, MODIS land cover classification algorithm has 
adopted univariate decision tree classifier (C4.5) as the primary 
classification algorithm to produce global land cover maps 
(Friedl et al. 2002). Decision tree algorithm has advantages that 
are particularly useful for remote sensing problems. First, it has 
ability to handle noisy and missing data. Second, they require 
no assumptions regarding the distribution of input data and also 
provide an intuitive classification structure.  
 
A technique known as “boosting” was used with decision trees 
(C4.5) to improve classification accuracy in this study. This 
technique has been widely tested in the machine learning 
community, and has also been confirmed to be effective for 
remote sensing-based land cover mapping (Friedl et al. 1999). 
Boosting improves classification accuracy by estimating 
classifiers in an iterative fashion using the base learning 
algorithm while systematically changing the training sample. 
(McIver & Friedl, 2001). It is also important to note that 
boosting is not effective in the presence of excessive error in 
training labels, or if the base classification algorithm does not 
offer classification accuracy greater than 50% (Friedl, 2002). 
Therefore, for exploration of ability of the BRDF features alone 
to classification using decision trees with boosting technique, 
which possibly produce low classification accuracy, the 
boosting technique is actually not effective in these cases. 
The questions examined in this paper are addressed by 
comparing classification accuracies achieved using different 
feature sets. By running the C4.5 decision tree classifier, the 
spectral signatures including NBAR and EVI matrices were 
used as input in a first test, and then the NBAR, EVI and 
individual or combination of different BRDF features (BRDF 
parameters and BRDF shape indicators) were used as input in a 
second test. Analysis of the differences in results were then 
performed for both data sets, both in terms of overall accuracy 
and per-class user’s and producer’s accuracies (Brown de 
Colstoun & Walthall, 2006). The 3049 sample points for eight 

selected land cover types was randomly partitioned into ten 
equal sized subsets in term of strata of land cover types, 
ensuring that approximately equal sample sizes are allocated to 
each stratum. The C 4.5 decision tree classifier was running 
with a boosting technique with the same pruning parameters as 
MODIS land cover classification algorithm does. With the ten-
fold stratified random sample points, nine subsets were used for 
training and pruning, and one subset was held out to estimate 
the predicted classification accuracy of the decision tree for 
unseen data. This method ensures that our training and test data 
sets were independent for each run. This was repeated 10 times, 
and all results given below are averages and standard deviation 
of both overall accuracy and per-class user and producer’s 
accuracy for these 10 times results. 
 
3.3 Land cover units 

The Canadian Forest Service’s project, entitled Earth 
Observation for Sustainable Development of Forests (EOSD), 
proposed a land cover legend (EOSD legend) based on a 
combination of the British Columbia and land cover 
classification schemes used by the National Forest Inventory 
(NFI). The EOSD legend is being used to map Canada’s forests 
with ETM+ imagery by federal, provincial and territorial 
mapping agencies who undertook the EOSD Land Cover 
mapping activities and provided ETM+ classification map at 
25m spatial resolution (Wulder 2002; Wulder and Nelson 2003).  
 
This EOSD land cover units includes 16 classes of natural 
vegetation with dry/wet background and several different 
densities (dense/open/sparse), and 6 classes of nonvegetated 
lands. Note that this legend is valid for land cover mapping of 
Canada with Landsat imagery at 25m spatial resolution. For the 
purpose of this study at 500m spatial resolution in MODIS, 
some small heterogeneous classes disappear after aggregation 
and only eight relatively homogeneous land cover units remain 
significant in this study. Also note that for the convenience of 
classification with decision tree algorithm, we change the 
original classification labels to a sequential numbers. 
 
3.4 Training and testing data 

We identify the training and testing data from the MODIS 
imageries by searching high resolution ETM+ classification 
map derived by EOSD project. To do this, the high resolution 
classification map is first degraded to the spatial resolution of 
MODIS data sets with majority method. At the same time, the 
MODIS imageries are re-projected into Universal Transverse 
Mercator (UTM) projection with same projection parameters 
and corner point position as ETM+ classification map. In this 
way, the ETM+ classification map is assumed co-register to the 
MODIS imageries. By linking the reprojected MODIS imagery 
to that of ETM+ classification map, we find the geometric 
registration difference is generally is acceptable. 
 
Stratifying by map land cover class and allocating 
approximately equal sample size to each stratus is a relatively 
common practice in accuracy assessment. This approach is 
designed to treats each class as equally important, and provide 
approximately equal precision for estimated user’s accuracy of 
each class (Strahler, 2006). Following this comment, the 
selection of sample pixels in the coarse scale data was made 
using the following rationale. For homogeneous scenes, if 
100% of the pixels in the Landsat land cover map were 
identified as the cover type on the coarse data then these were 
selected. For heterogeneous scenes, coarse pixels containing 
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90% of the cover type identified in the Landsat data were 
selected. For the core type with a large number of samples such 
as herb in the study region, we extract every 21th pixels from 
the degraded ETM+ land cover types to make sure that the 
number of samples for each land cover type has comparable 
magnitude. Finally, all fill values were removed from sample 
pixels and the final training and testing samples are presented in 
table 1. 
 
Class label Class name N Cover fraction(%) 
8 Shrub Tall 208 ≥90 
10 Wetland-Tree 565 ≥90 
11 Wetland-Shrub 227 ≥90 
12 Wetland-Herb 232 ≥90 
13 Herb 585 100 
14 Coniferous 

Dense 
290 100 

15 Coniferous Open 389 ≥90 
17 Broadleaf Dense 553 100 
 

Table 1. Number of Samples in each selected classes (N) 
 
After acquiring the sample pixels, we perform a ten-fold cross 
validation for each classification case considered to provide the 
most realistic and robust estimates of classification accuracy. 
To do this, these samples were randomly partitioned into ten 
equal sized subsets, which ensure that the class distribution of 
the entire dataset was maintained in each. For each run, one 
subset was held out, using the nine remaining subsets for 
training and pruning. The reserved subset was then used to 
estimate the predicted classification accuracy of the decision 
tree for unseen data, thereby ensuring that our training and 
testing data sets were independent for each run. 
 
 

4. RESULTS AND DISCUSSIONS 

The analyses performed for this work examine questions related 
to exploration of the capability of BRDF features to improve 
classification accuracy as additional information to spectral 
signatures. Seventeen input feature data sets were generated 
using different combinations of input features. These features 
are grouped into spectral signatures (NBAR and EVI), which 
have been used as inputs to MODIS land cover classification 
algorithm, eight MODIS BRDF shape indicators, which has 
been investigated in a company paper using both ground 
measurements and satellite samples, and MODIS BRDF 
parameters products. It is important to note that the isotropic 
parameters of MODIS RTLSR model represent the surface 
reflectance illuminated and viewed at nadir, and is mainly a 
function of the optical properties of vegetation and soil 
reflectance. These optical properties could be equally expressed 
by MODIS NBAR products. Therefore the isotropic parameters 
are not included in this classification exercise. 
 
4.1 Nadir reflectances with BRDF shape indicators 

The BRDF shape indicators were designed to indicate the 
BRDF shape in MODIS and improve classification accuracy of 
land cover classification (Gao et al. 2003). Reflectance-based 
BRDF shape indicators such as ANIF, ANIX and NDAX 
indicate BRDF shape in term of the reflectance combination in 
typical scattering angles (hotspot, nadir and dark spot). 
Parameters-based BRDF shape indicators such as AFX and SSI 
are constructed with BRDF parameters of RTLSR BRDF model, 

which are easy to provide full-scale description of the BRDF 
shape. 
 
As part of our analyses, we examine the contribution of eight 
MODIS BRDF shape indicators on classification by running the 
C4.5 decision tree classifier using only the NBAR and EVI as 
input in a first test, and then the individual or combination of 
BRDF shape indicators together with NBAR and EVI in a 
second. The contributions of the BRDF shape indicators on 
classification are quantified by comparing the overall and per-
class accuracy achieved from these two tests. 
 Input Features Overall 

Accuracy (%) 
Difference W/WO 
indicators 

1 NEs 78.60(±1.29) / 
2 NEs and ANIFR 78.84(±2.19) 0.24 
3 NEs and ANIFN 78.67(±2.08) 0.07 
4 NEs and ANIXR 78.70(±2.41) 0.10 
5 NEs and ANIXN 79.63(±1.12) 1.03 
6 NEs and AFXR 79.00(±1.86) 0.40 
7 NEs and AFXN 79.34(±1.67) 0.74 
8 NEs and NDAX 78.27(±1.50) -0.33 
9 NEs and SSI 78.73(±1.47) 0.13 
10 NEs and all 

indicators 
80.13(±1.70) 1.53 

Table 2. Overall Accuracy with/without BRDF shape indicator 
matrices with +/- one standard deviation in parentheses (NEs 

represent 7 NBAR and 1 EVI) 
 
Inspection of table 2 shows that the MODIS BRDF shape 
indicators have information contents regarding land cover types 
except NDAX, but are very modest. Among these indicators, 
the ANIXN seems more useful in discriminating the land cover 
types, which increase overall classification accuracy by 1.03%. 
Adding all these indicators as inputs to decision tree classifier 
together with NBAR and EVI improves the overall 
classification accuracy by 1.53% relative to the results that only 
use NBAR and EVI as inputs. In both cases, these increases, 
however, must be evaluated against large standard deviation, 
indicating that the results may not be always stable. Inspection 
of User’s and Producer’s accuracy shows that the NIR ANIX 
seems useful in distinguishing wetland-tree and wetland shrub, 
increasing the user or producer’s accuracy by 5-6%, although 
such improvements somewhat sacrifice the accuracy of other 
candidate classes. Same finding is seen for AFXR, which 
increase both user and producer’s accuracy by about 5% for 
Coniferous dense. 
 
While the gains in terms of overall classification accuracies are 
modest, considering that only NIR ANIX layer was included in 
the BRDF classification, such an improvement is also 
significant. Most useful information provided in both spectral 
index and angular indices is being extracted from the 7 NBARs 
by the trees. So both spectral index and angular index are of 
limited use in distinguishing the land cover types in this study. 
On the other hand, taking the point of view from error reduction, 
the NIR ANIX reduces classification confusion by 4.81%. The 
error reduction is up to 16.4% for wetland-tree, which could be 
considered to be major error reduction for this land cover type. 
 
4.2 Nadir reflectances with BRDF parameters  

It was suggested exploring the contribution of directional 
components of information in MVA data on classification by 
fitting semi-empirical, kernel-driven BRDF model to the 
multiple-view-angle, removing the isotropic component, and 
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then using the remaining model outputs directly for land cover 
classification [Hyman, A. H and Barnsley, M. J. 1997]. The use 
of the POLDER BRDF metrics within a decision tree classifier 
shows that the metrics can reduce the overall errors of global 
land cover classification [Brown de Colstoun, E.C. and Walthall, 
C.L. 2006]. Inclusion of three BRDF parameters retrieved by 
fitting semi-empirical, kernel-driven BRDF model to MISR 
data sets in classification in semi-arid grasslands have been 
proven useful [Su 2007]. As part of our studies, we perform the 
similar analyses in context of MODIS. It is a significant effort 
to explore the contribution on classification of including 
volumetric and geometric parameters as input features to an 
operational decision tree algorithm that are being used in 
MODIS land cover products. The features used in this section 
include NBAR and EVI, 14 original BRDF parametersThe 
normalized BRDF parameters are the relative magnitude of 
volume and surface scattering to isotropic scattering and 
possibly describe “purer” BRDF information. 
 
 Input Features Overall 

Accu.(%) 
Difference  

1 NEs 78.60(±1.29) / 
2 NEs and 14 Param. 83.32(±1.54) 4.72 
3 NEs and 14 Param. 

Norm. 
82.79(±1.61) 4.19 

4 NEs and 4 Param. 81.63(±2.84) 3.02 
5 NEs and 4 Param. 

Norm. 
81.86(±1.79) 3.26 

 
Table3. Overall Accuracy with/without BRDF parameter 

matrices with +/- one standard deviation in parentheses (NEs 
represent 7 NBAR and 1 EVI) 

 
The potential benefits of MODIS BRDF parameters for 
classification were seen from table 3, which represents the 
average of the results of 10-fold cross-validation. From table 3, 
we can see that adding 14 BRDF parameters or these 
parameters normalized by f_iso with NBAR and EVI increase 
the overall classification accuracy by 4.72% and 4.19% 
respectively, that adding 4 BRDF parameters or 4 normalized 
parameters in red and NIR band alone improve the overall 
classification accuracy by 3.02% and 3.26%. In both cases, 
these improvements are not “huge”. However, from the point of 
view for these gains as a reduction of error or confusion of the 
classification, the confusion reduction is 15-22% if these BRDF 
coefficients are included. This means that approximate 15-22% 
of misclassified training observations from feature combination 
of NBAR and EVI are correctly classified by adding BRDF 
parameter features. 
 
It is also useful to examine the per-class user’s and producer’s 
accuracies to determine whether particular classes may benefit 
more than others from the inclusion of the BRDF matrices. 
Inspection of Producer’s accuracy shows that when four 
combinations of BRDF parameters were supplemented with 
NBAR and EVI, the 4-9% improvements of producer’s 
accuracy are widely seen for Wetland Tree, Wetland Shrub, 
Coniferous Dense and Coniferous Open with no detriments to 
other candidate classes. For the mean user’s accuracies, the 
largest mean increase is found for Wetland Shrub, up to 15.05% 
by including 4 normalized parameters. Substantial improvement 
is also seen in the user’s accuracy for the Wetland Tree, 
Coniferous Dense, and Coniferous Open, with near, or greater 
than 5%. These results indicate that the both original BRDF 
parameters and their normalizations by f_iso contain 

information contents related to land cover types and thus 
improve both user’s and producer’s accuracies. Moreover, this 
improvement is gained with no detriments to other classes 
under investigation. 
 
Closer examination of the error matrices with and without 
BRDF features reveals that the Herb is easiest to classify only 
with NBAR and EVI, and Broadleaf dense is next. Most 
confusion occurs among Shrub tall, Coniferous Open, Wetland 
tree, Wetland shrub, and Coniferous dense. For example, Shrub 
tall is more confused with Coniferous open, and Wetland tree, 
Wetland shrub and Coniferous dense are not easily 
distinguishable only with NBAR and EVI in term of the 
confusion matrices. However, the additional BRDF matrices 
generally reduce the confusions among them, although this 
error reduction is sometimes achieved by sacrificing the 
accuracy of other candidate classes. Calculations in the way of 
error reduction for per-class show that 14 additional BRDF 
parameters decrease misclassification rates by 7.8%-40.5% for 
classes under investigation except for Herb. Stated another way, 
the use of BRDF parameter features together with NBAR and 
EVI reduces the confusions among some classes that are 
difficult to discriminate only with spectral NBAR and EVI 
matrices as inputs to decision tree classifier. 
 
4.3 Conclusions and discussions 

The objective of the work described here is to quantify the 
contribution of the MODIS BRDF features (MODIS BRDF 
shape indicators and MODIS BRDF parameters) on 
classification as supplementary features to spectral nadir 
reflectances (NBAR) and vegetation index (EVI), which have 
been used as inputs in current MODIS land cover algorithm. 
The straight method is to run the C4.5 decision tree classifier 
using only the NBAR and EVI matrices as input in a first test, 
and then NBAR, EVI, and individual or combination of BRDF 
features in a second. The difference in results of both data sets 
in term of both overall accuracy and per-class user and 
producer’s accuracy were analyzed. All results given above are 
means and standard deviations in classification accuracies 
and/or error for 10-fold cross validation excise. The accuracy 
assessment is conducted based on confusion matrix approach, 
which is the most common accuracy assessment approach for 
categorical class (Foody, 2002; Congalton, 1991, Jansses and 
van der Wel, 1994) and was also recommended for global land 
cover validation (Strahler et al., 2006). 
 
The results presented in this paper suggest several main 
conclusions. First, adding MODIS BRDF shape indicators 
produced little improvement to classification accuracy. The best 
indicator related to discriminating land cover types seems to be 
ANIX in NIR band, which improve overall accuracy by 1.03% 
when it was added to NBAR and EVI matrices. This suggests 
that the most useful information provided in both angular 
indices and spectral indices is being extracted by the decision 
tree classifier from the original NBAR data in this study. 
Therefore, additional information of both angular indices and 
spectral indices are very modest in identifying and 
distinguishing land cover types. 
 
Second, the inclusion of f_vol and f_geo parameters produced 
more improvements both in term of the original parameters and 
these parameters normalized by f_iso. Adding best feature sets 
improve overall accuracy by 4.72%, per-class user’s accuracy 
by 15.02% and per-class producer’s accuracy by 8.96%. 
Considering that 14 additional BRDF parameters were included 
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in classification, an operational method is to supplement 4 
BRDF parameters in red and NIR band with NBAR and EVI, 
which improve overall classification accuracy by over 3% and 
per-class user and producer’s accuracy by 5-8% on 4-5 
candidate classes with no detriments to others. From the point 
of view of confusion reduction, adding BRDF parameter 
matrices reduces misclassification rate by 15-22%. Stated 
another way, adding BRDF parameter features significantly 
reduce the confusions among classes that are difficult to 
identify and discriminate only with spectral reflectance 
signatures. 
 
It is clear that the classification results produced by supervised 
algorithms heavily rely on the quality and representativeness of 
the training data used; therefore the accuracy improvements or 
error reductions for each candidate class must be assessed 
against its standard deviations. Moreover, there are many 
sources of both conservative and optimistic bias in 
classification accuracy (Verbyla and Hammond, 1995; 
Hammond and Verbyla, 1996). However, the method performed 
here is consistent for all available features, ensuring that 
accuracy improvements or confusion reductions are only 
brought by different input feature sections. In this sense, the 
results given in this study are believable. On the other hand, we 
composite 23 daily-rolling MODIS BRDF and NBAR products 
on 16-day period into full inversion input features that are 
superior to single MODIS BRDF/Albedo product, which could 
include gaps and magnitude inversion. Therefore, we expect 
accuracies derived from classifications based on these high 
quality data to improve accordingly. 
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