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ABSTRACT: 
 
As the spatial resolution improvement in remotely sensed imagery, more detail spatial information of mangrove forest can be shown. 
It is important to find a method, which can effectively use the spatial information to improve the accuracy of mangrove forest 
classification. In the study, SPOT-5 image of Matang Mangrove Forest Reserve in Malaysia has been used in the mangrove forest 
classifications, to study the influence of different spatial features. It is shown that influence of first-order （including entropy-1） 
and second-order texture features (including entropy-2, energy and homogeneity) to classification with Maximum Likelihood 
Classifier (MLC) and Support Vector Machine (SVM) are different. The involvement of texture features will reduce the 
classification accuracies with SVM. Meanwhile, the classification accuracies with MLC will mostly improve slight, if texture 
features (except the energy texture) are involved. In this research, a local spatial statistics, local Moran’s I index, was also tested. 
The Moran index are different from texture features, because the distance between pixels is considered in their calculation. The 
results shown that the Moran index calculated from multispectral image and panchromatic image can all improve obviously the 
classification accuracy of both MLC and SVM. For example, when the Moran index calculated from multispectral image with 7x7 
kernel window are involved in the classification of SVM and MLC with spectral features, the accuracies will become 75.2% and 
77.5% respectively, which are improved about 3.5% and 6.9% respectively. Our results show that it is necessary and important to 
find effective spatial features from high resolution remotely sensed image to improve the mangrove classification accuracy. 
 
 

1. INTRODUCTION 

1.1 General Instructions 

Mangrove forest is an essential ecological coastal zone area of 
ecology with high-productivity, high-return and high 
decomposition rate. It is an ideal habitat that not only provides 
marine life food and shelter but also protects shoreline from 
erosion and purifies wastewater containing pollutant 
concentration. Mangrove forest therefore has important 
ecological, environmental and economical values (Zhang, 2001; 
Green, 1998).  However, mangrove area is of drastic reduction 
as a result of the human caused pollution and irrational 
development. According to the statistics, approximately 73% 
(Zhang, 2001) of natural mangrove forest in China has been 
reduced since the 1950s. Consequently, the monitoring and 
protection mangrove forest should be given the top priority. 
 
In order to prompt a timely and effective monitoring and 
management of mangrove forest resource, an immediate, 
accurate and cost reasonable mangrove forest cartography 
technique is necessary. Remote sensing technology is capable 
to realize the mangrove forest information gathering in wide 
range scale. However, a key point always been concerned and 
studied among scientist researches in this sophisticated 
technology is the method to enhance the accuracy of remote 
sensing image and the level of automation in mapping. At early 
time, remotely sensed data utilized in mangrove forest 
investigation was aerial photos, which mainly depended on 
manual interpretation. In 1980s, Landsat and SPOT satellite 
imageries were used for the researche of mangrove forest 
remote sensing mapping (Green, Clark, 1998). Researchers 

have attempted different methods to obtain ideal classification 
accuracy. Gao (1998) proposed a “two-tiered” classification 
methodology to utilize SPOT imagery to classify mangrove 
forest located at New Zealand Waitemata port, where 81.4% 
accuracy of mangrove and non-mangrove forests has been 
assessed . Green et al. (1998) examined five classification 
methods using TM, SPOT, airborne hyperspectral data (CASI) 
and the accuracies to differentiate mangrove and non-mangrove 
forests using SPOT XP and TM data are approximately 25% 
and 80% respectively. Accuracy to differentiate 9 mangrove 
forest types obtained from TM and SPOT XP are less than 25%, 
where higher classification accuracy has been obtained from 
CASI by about 80% accuracy . Gao (1999) research revealed 
that if only utilize SPOT XS data in high dense and low 
mangrove forest cartography, accuracies of 77.5% and 67.5% 
were obtained respectively, and accuracy increased to 80% 
when fused with 10m resolution SPOT PAN data. This 
indicated spatial resolution is important to enhance accuracy in 
mangrove forest remote sensing classification. 
 
With existence of high resolution satellite imagery such as 
SPOT-5, IKONOS and Quickbird and so on, the spatial 
resolution of remote sensing image have been significantly 
improved, much detailed mangrove forest spatial information 
could be manifested from imagery. That provides an 
opportunity to improve the accuracy of mangrove forest 
classification .Wang et al. (2004) analyse the impacts of the 
classification accuracy by adding texture features, when they 
utilized IKONOS and Quickbird image to classify three kinds 
of mangrove, black, white and red. The results show that the 
involvement of first-order texture features can improve the 
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classification accuracy at a certain extent, but the adding of 
second-order can not improve classification accuracy efficiently. 
The researches indicated that it is important to find a method, 
which can effectively use the spatial information in remote 
sensing image of high spatial resolution to improve the 
accuracy of mangrove forest classification cartography. In this 
study, SPOT-5 image of Matang Mangrove Forest Reserve in 
Malaysia has been used in the mangrove forest classifications. 
In order to make the best use of local spatial characteristics, not 
only the first-order/second–order texture features but also a 
kind of local spatial statistics –local Moran’s I index (Getis, 
1992) were used in this study. This paper analyses the influence 
of the classification accuracy with different spatial features 
based on the experiment. 
 
 

2. STUDY AREA AND DATA PROCESSING 

2.1 Study Area 

Matang mangrove forest located at West Coast Peninsula of 
Malaysia with North latitude 4o15’- 5o1’ and East longitude 
100o2’-100o45’. Matang mangrove forest reserve systematized 
management started as early as 1904, and gazetted as the best 
conserved mangrove forest reserve in the world. This mangrove 
forest reserve is divided into four sub-areas from North to South: 
North Kuala Sepetang, South Kuala Sepetang, Kuala Trong and 
Sungai Kerang. Among these sub-areas, Sungai Kerang is 
formed as an island, where its interior is consists of inland 
vegetations and surrounded by different mangrove forests. 
Sungai Kerang has been chosen as study area since its 
mangrove types is abundant comparing other three sub-areas 
(Figure 1). 
 
 

 
 

Figure 1.  SPOT-5 image of Sungai Kerang 
 

2.2 Data 

SPOT multispectral (XP) and panchromatic (PAN) image data 
were used in the experiment. These data gained on 30th January 
2005 with both 10m multispectral image and 2.5m 
panchromatic image. Firstly, multispectral and panchromatic 
images were fused by advanced HIS fusion algorithm [13] before 
correction conduction using control points gathered from DGPS 
and topographic map. The multispectral image was rectified      Table 1.  Classes definitions and their abbreviation   

based on corrected fusion image. In order to achieve higher 
accuracy, both geometric correction mean square errors were 
maintained within a single pixel. 
 
This study divided study area landcover into 9 classes, after 
referred to forest classes defined in Matang mangrove forest 
reserve plan and combined with field investigation 
circumstances. These classes are including 6 mangrove forest 
types: accreting Avicennia forest, transitional new forest, 
Bruguiera cylindrica forest, Bruguiera parviflora forest, 
Rhizophora forest and dryland. Table 1 has described 
specification of each class and their abbreviation. The study 
chose training and test samples separately, according to the 
results of Matang mangrove forest reserve management 
information and field investigation (Table 2). 
 
 

Class Name
(Abbreviation) Specification 

Accreting 
Avicennia 

Forest 
(Avic) 

These forests are characterised by young 
stands of Avicennia species invading the 
mud flats of estuaries and foreshores. 
Common species include Avicennia alba 
and A. marina that are sometimes 
interspersed with Sonneratia, Rhizophora 
and Brugguiera species. 

Transitional 
New Forest 

(T-New) 

This type consists of the older accreting 
Avicennia forest, which carries in it 
intermittent stands of both Rhizophora and 
Bruguiera species in varying proportions. 

Bruguiera 
cylindrica 

Forest 
(B-Cyl) 

These forests usually consist of pure 
stands of Bruguiera cylindrica with small 
populations of Rhizophora and other 
Bruguiera species. 

Bruguiera 
parviflora 

Forest 
(B-Pav) 

These forests usually comprise a mixture 
of Brugguiera parviflora with Rhizophora 
species towards the mainland and 
Bruguiera cylindrica towards the seafront.

Rhizophora 
Forest 
(Rhiz) 

The forest is the major forest type in 
Matang Mangroves. It consists 
predominantly of Rhizophora apiculata 
and R. mucronata, two main commercial 
species. This forest is characterised by 
trees with straight boles and even canopy 
heights. 

Dryland Forest
(Dryland) 

This type consists of two sub-types: 
“transitional dryland forest” and “true 
dryland forest”. The former contains a 
mixture of sparse stands of Rhizophora 
species and a large population of relic 
Bruguiera species with a dense crop of 
Acrostichum ferns on the forest floor. The 
later denotes the final stage of mangrove 
succession and the transition into inland 
forest type. Structurally, it consists of 
three canopy layers, namely emergent, 
main canopy and understorey. 

Inland 
Vegetation 

(Inland) 

This type mainly consists of coco and 
pineapple, which distribute in interior area 
of the island, where never covered by sea 
water.  

River Rivers. 

Others This type consists of bare land and 
building area. 
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Type Training sample 
(pixels) 

Test sample 
(pixels) 

Avic 203 4354 
T-New 140 540 
B-Cyl 254 2358 
B-Pav 151 955 

Dryland 302 939 
Rhiz 276 5208 

Inland 306 1368 
River 131 318 
Others 122 337 

 
Table 2.  Training and test sample size for SPOT-5 XP images  

 
 

3. CLASSIFICATION METHOD 

3.1 Classification features 

Both spectral and spatial features have been used in 
classification experiments. All features have been normalized. 
Value of each image band pixel is considered as spectra feature. 
The spatial features include texture features and local spatial 
statistics. The study adopted the first-order and second-order 
texture features which are in common use (Baraldi, 1995). The 
first-order texture feature includes entropy-1(Et-1), whereas 
second-order texture consist homogeneity (Hm), energy (En) 
and entropy-2 (Et-2). The general definition of local spatial 
statistics is as follows (Anselin, 1995; Getis, 1992): 
 
 

∑
=

=Γ
N

j
ijiji

1

ξω     (1) 

 
 
Where is the measure for location i defined in terms of 

spatial similarity in one matrix
iΓ

ijω  and value similarity ijξ  

which capturing the interaction between the attribute values at 
locations i and j. N is the number of pixels within the 
neighbourhood of pixel i. ijω is usually defined as the 

reciprocals of distance between pixel i and pixel j. The 
definition of ijξ  is of multiplicity. In this paper, ijξ is defined 

as (Getis, 1992): 
 
 

( )( )xxxx jiij −−=ξ             (2) 

 
 
Where x  is the average property of pixels within the 
neighbourhood. The feature based on the formula (1) (2) is 
named as “local Moran’s Index” (Getis, 1992), hereinafter 
referred to it as Moran (abbreviated as Mo). Moran’s I is a kind 
of local spatial statistics indicator, which reflect the level of 
cluster in the image. If the index is positive, then the property 
values of local pixels are similar. Contrarily, if the index is 
negative, then the property values are of large difference. First-
order/second-order texture features consider the pixels in one 
window as equality, but the Moran index is different from 

texture features, because the distance between pixels is 
considered in their calculation. 
3.2 The Classification Schemes 

To study the effectiveness of different spatial features, spectral 
features were firstly used in classification experiments. Then, 
different spatial features calculated with multispectral images 
(XS) and panchromatic image (PAN) were included 
respectively. When calculated the multispectral image texture 
feature, 3 different window sizes selected are 3x3, 5x5 and 7x7. 
Larger window sizes of 5x5, 9x9 and 13x13 were replaced 
during panchromatic image texture calculation. Classification 
was implemented using maximum likelihood (MLC) and 
support vector machine (SVM) classifiers (Cortes, 1995; 
Vapnik, 1998). SVM implemented RBF kernel function, its 
penalty coefficient and kernel function width through cross-
validation method to obtain best value (Anguita, 2000; Vapnik, 
1998). One-versus-Rest multiple classification strategies were 
implemented in SVM classification (Bottou, 1994).More details 
of the classification scheme are shown in Figure 2. 
 
 

 
 

Figure 2.  Classification Schemes 
 
 

4. RESULTS AND DISCUSSION 

 Table 3 shows the classification accuracies of different 
classification schemes. It is shown that the influences of texture 
features to classification with the two classifiers are different. 
For MLC, all kinds of texture features except energy increased 
the classification accuracy, and the highest increment is 2.1% 
which owe to Hm. The classification accuracies of SVM with 
just spectral feature are 5.6% higher than MLC. However, the 
accuracies for SVM classification method decreased obviously 
when any texture features were included. The influence of 
second-order to classification is obviously larger than first-order. 
When energy calculated with multi-spectral image (window 
size of 3x3) is included, the classification accuracy of SVM 
dropped from 73.9% to 62.6%, even lower than the accuracy of 
MLC. 
 
However, the involvement of local spatial statistic Moran’s I 
enhance the classification accuracies obviously both with MLC 
and SVM. For example, when the Moran index calculated from 
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multispectral image with 7x7 kernel window are involved in the 
classifications of SVM and MLC together with spectral features, 
the accuracies will become 75.2% and 77.5% respectively, 
which are improved about 3.5% and 6.9% respectively (Table 3 
and Figure 3). For MLC classification method, the increment of 
classification accuracy of Moran index calculated from 
multispectral image is larger than that from panchromatic image. 
But for SVM classifications, the improvements are similar. 
 
 

Accuracies Window 
Size Feature MLC SVM

- XS 68.3 73.9 
XS + Et1_X 69.1 72.1 
XS + Et2_X 67.6 67.2 
XS + Hm_X 69.3 64.2 
XS + En_X 65.7 62.6 

3×3 

XS + Mo_X 73.3 75.5 
XS + Et1_X 71.0 70.1 
XS + Et2_X 69.7 69.4 
XS + Hm_X 70.4 69.5 
XS + En_X 66.6 67.6 

5×5 

XS + Mo_X 74.1 76.8 
XS + Et1_X 71.0 72.2 
XS + Et2_X 70.0 67.0 
XS + Hm_X 70.3 69.2 
XS + En_X 67.4 67.6 

7×7 

XS + Mo_X 75.2 77.5 
XS + Et1_P 69.6 71.3 
XS + Et2_P 68.8 72.5 
XS + Hm_P 69.0 73.3 
XS + En_P 67.9 72.8 

5×5 

XS + Mo_P 69.1 75.8 
XS + Et1_P 69.2 72.1 
XS + Et2_P 69.1 73.2 
XS + Hm_P 70.4 71.5 
XS + En_P 69.3 71.8 

9×9 

XS + Mo_P 69.1 76.1 
XS + Et1_P 69.7 72.5 
XS + Et2_P 69.1 73.0 
XS + Hm_P 70.4 71.7 
XS + En_P 69.3 71.8 

13×13 

XS + Mo_P 69.1 76.1 
 

Table 3.  Classification Accuracies 
(The features with “_X” are calculated with multispectral 
images. The feature with “_P” are calculated with panchromatic 
image.)  
 
 

5. CONCLUSION 

In this study, SPOT-5 image of Matang Mangrove Forest 
Reserve in Malaysia has been used in the mangrove forest 
classifications, to study the influence of different spatial 
features. It is shown that influence of first-order (including 
entropy-1) and second-order texture features (including 
entropy-2, energy and homogeneity) to classification with MLC 
and SVM are different. The involvement of first-order/second-
order texture features reduced the classification accuracies of 
SVM. However, the classification accuracies of MLC mostly 
improved, if texture features are involved. Also, the study 
adopted a local spatial statistic—Moran’s Index which is 
different from texture features, because the distance between 
pixels is considered in their calculation. The results shown that 

the Moran index calculated from both multispectral image and 
panchromatic image can all improve obviously the 
classification accuracy of both MLC and SVM. 
 The results show that different spatial features have different 
role in the classification. Moreover, the influences are different 
for different classifiers. The increment of the classification 
accuracy with Moran is much higher than the commonly used 
texture features. Therefore, we can reach two conclusions: 1) 
Local Moran Index is an effective spatial feature to improve the 
performance mangrove classification; 2) it is necessary and 
important to find effective spatial features from high resolution 
remotely sensed image. 
 
 

a) MLC 

b) SVM 

 
Figure 3.  Classification Results (SPOT5 XS + Moran7x7) 
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