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ABSTRACT: 
 
Remotely sensed data is the most important data source for environmental change study over the past 40 years. Since large 
collections of remote sensing imagery have been acquired in a time frame of successive years, it is now possible to study long-term 
spatio-temporal pattern of environmental change and impacts of human activities. This study seeks an efficient and practical 
methodology for landuse monitoring and spatio-temporal pattern analysis by integrating multitemporal remotely sensed data in a 
monitoring time frame of 13 years at the middle reach of Tarim River in the aridzone of China. Multi-source and multi-scale 
remotely sensed images are used, including multispectral images acquired by Landsat 5 and 7, China-Brazil Earth Resources Satellite 
(CBERS) and Beijing-1 (BJ-1). The temporal trajectories of landuse change have been established for analysing its spatial pattern for 
a better understanding of the human impact on the fragile ecosystem of China’s arid environment.This study analyzed spatial pattern 
of landuse change trajectories based on the post-classification comparison method. All images were classified into 5 to 6 classes, 
which were then combined into two main classes, namely, farmland and the others. Area statistics and temporal trajectories of 
changed farmland were then derived using the classification results. The result shows that in the study period of 13 years, the 
farmland has increased over two times with an annual growth rate of over 10%. It is also shown that farmland abandon was 
significant in some areas due to some environmental issues such as shortage of water resource and salinity. Using the method, one 
can re-establish the history of landuse change and related such change with other environmental and socio-economic data, so as to 
gain better understanding on the response of natural environment to the human impact that may be introduced as the consequence of 
economic development and government polices. 
 
 

1. INTRODUCTION 

Landuse and land cover change (LUCC), associated with 
climate changes have became a focus of the study on the 
interactions between human activities and natural environment. 
Land cover change can be regarded as one of the most sensitive 
indicators that echo these interactions (Zhou et al., 2008). 
Especially in an arid environment where the ecosystem is 
always considered to be fragile, land cover change often reflects 
the most significant impact on the environment due to human 
activities or natural forces. Remote sensing can be a good tool 
for getting wide impression on land cover change. In decades, 
remotely sensed data have been used for environmental change 
study and great efforts have been made to analyze changes of 
environmental elements and impacts of human activities. 

Change detection on land cover focuses mainly on four aspects, 
pp. (1) detecting if a change has occurred, (2) identifying the 
nature of the change, (3) measuring the area extent of the 
change, and (4) assessing the spatial pattern of the change 
(MacLeod and Congalton, 1998). Since spatial pattern of the 
change is regarded as a good indicator of the impact by the 
other three aspects, its research has become quite active in 
change detection study (Nagendra et al., 2004). 

Many remote sensing change detection methods have been 
developed to monitor land cover change and to build spatio-
temporal patterns of change, in order to derive better 

understanding of causes and consequences of the change, and to 
model the tendency of the change. In general, remote sensing 
change detection methods can be divided into two broad classes, 
termed as bi-temporal change detection and temporal trajectory 
analysis (Coppin et al., 2004). The former is based on the 
comparison between two dates, and the latter analyzes the 
tendency of change in a multiple epoch or a continuous time 
scale. 

Techniques have been developed to support these two 
categories of change detection methods. For example, the 
commonly used methods of image differencing and image 
ratioing detect land cover change by comparing images acquired 
on two different dates using the difference or ratio of digital 
number values of the images (Lillesand et al., 2004; Coppin et 
al., 2004). For trajectory analysis, the time series analysis of 
NDVI (Normalized Difference Vegetation Index) is widely used 
for modelling land cover change (e.g. Petit et al., 2001; Hayes 
and Cohen, 2007). The trajectory analysis is typically based on 
the imagery with high temporal, but often low spatial, resolution 
such as MODIS. 

With the accumulation of remotely sensed images over the past 
decades, it is now possible to analyze the spatial pattern of land 
cover change over a long period using images with a higher 
spatial resolution and multitemporal coverage. A time series 
analysis of multitemporal images will be helpful to understand 
the sequence patterns of land cover change during the long 
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period and to forecast the trend of changes in future (Tottrup 
and Rasmussen, 2004; Liu and Zhou, 2005). However, to 
understand causes of land cover change, study often focuses on 
the metrics (e.g. Crews-Meyer, 2004, 2006) of land cover types 
that form a part of input parameters together with other 
environmental or human factors. Further research is therefore 
needed to develop a methodology that quantifies the spatial 
pattern of change trajectories so that spatio-temporal pattern of 
the change can be better described and its relation to 
environmental and human factors may be further explored 
(Zhou et al., 2008). 

For aridzone management, ability to detect successive land 
cover changes is considered essential since the fragile 
ecosystem in the arid environment may be frequently changed 
in response to the changing conditions. With the accumulation 
of mid- or high-resolution imagery, an integrated method of bi-
temporal change detection and temporal trajectory analysis 
seems to be a practical solution to provide details on the spatio-
temporal pattern of land cover change. 

This research aims to investigate the environmental impacts due 
to rapid expansion of cultivated land in the marginal area of 
aridzone in western China. With the implementation of China’s 
national ‘Western China Development’ Strategy, the rapid 
economic growth has been significant in the past decade. This 
growth, however, has fundamentally based on the large 
consumption of natural resources such as land and water, which 
in turn created great impact on the arid environment where the 
ecosystem is fragile and vulnerable due to the harsh natural 
conditions. 

In order to find the balance of economic growth and 
environmental conservation to achieve sustainable regional 
development, this research is needed to investigate on what 
happened in the past and the trend of change in the near future. 
 
 

2. METHODOLOGY 

The method of this study is based on post-classification 
comparison approach, which is commonly employed in remote 
sensing change detection studies. Multitemporal images are 
classified into land cover types for each acquisition date using a 
unified land cover classification scheme. Then, land cover 
change trajectories, or categorical ‘pixel history’, are 
established based on the classified images. The trajectories are 
further reclassified according to the nature of land cover 
changes. 

 
2.1 Study Area and Data Used 

The study area is centered at Yuli County, Xinjiang Uygur 
Autonomous Region of China. (Figure 1) It locates at the 
middle reach of Tarim River, the longest inland river of China. 
At the fringe of Taklimakan Desert, the “green corridor” of 
Tarim Basin is one of the most important habitation areas in 
aridzone of China. The landscape is typical in China’s aridzone, 
with a generally dry and harsh environment, represented by 
typical desert vegetation and soils. 

Since early 1990's, the national and local governments' policy 
has stimulated considerable investment on irrigated agriculture 
in the fringe area of the Taklimakan Desert. The irrigated 
farmland has been trebled, mainly by converting lands 
originally covered by natural rangeland vegetation into irrigated 
cotton fields. However, this has also raised serious questions on 

whether this rapid growth can sustain given the intensified 
competition on water resources. When the supply of water 
become unsustainable, then the newly cultivated farmland will 
most likely be abandoned, leaving the sandy bare soil exposed 
to the strong seasonal wind without the protection of original 
rangeland vegetation. 
 
 

 
 

Figure 1. The study area (as shown in the shaded area that is 
covered by the images used for this study). 

Five multispectral remotely sensed images from Landsat 
TM/ETM, CBERS and BJ-1 CCD data have been acquired for 
this study. The images cover most farmlands of Yuli County 
surrounded by desert and Gobi (stony desert). The 
overwhelming majority of the farmlands in Yuli is cotton fields, 
where the growing season is from April to October. 
Accordingly, the images used for this study were acquired in 
August or September to cover the period where the contrast 
between farmlands and other land cover types is high in the 
spectral region covered by the multispectral images (Table 1). 
 
 

Satellite Sensor Resolution (m) Date 
BJ-1 CCD 32 31/8/2007 
BJ-1 CCD 32 10/8/2006 
CBERS 2 CCD 19.5 15/9/2005 
Landsat 7 ETM 28.5 17/9/2000 
Landsat 5 TM 30 25/9/1994 

 
Table 1. Image data used in this study. 

 
2.2 Image Processing 

.Image registration 

The 2005 CBERS image was registered and geo-referenced 
based on the topographic map at a scale of 1:50,000. The other 
images were then geometrically corrected and registered using 
image-to-image registration using the 2005 image as a master. 
Efforts have been made to control the registration errors within 
half a pixel of the correspondent image so that the errors of 
change detection caused by mis-registration are less critical. 
The adopted coordinate system is Transverse Mercator with 
central meridian of 87°. 
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 Classification 

A supervised classification method using the Maximum 
Likelihood classifier is employed to classify these five images 
independently. Each image was classified into 5 to 6 classes 
independently to delineate land cover types. The land cover 
classes were then recoded and merged into only two classes, 
namely, farmland and the others. A post-classification process 
was applied to the unified classification results to remove 
isolated pixels using a majority filter with a 3×3 window. 

In order to make the image data comparable at the same spatial 
resolution so as to establish change trajectories at the pixel level, 
all the images need to be resampled to a 30m resolution after 
classification. 
 
 Accuracy Assessment 

The standard method of error matrices is used to assess 
classification accuracy for each image date. Both overall 
accuracy and kappa index are computed as the accuracy 
assessment indices. The accuracies of these classified images 
are assessed independently. For each classified image, more 
than 200 sample points including farmland and the others are 
randomly located on the original image with the reference to the 
field investigation data as the reference data set. 
 
2.3 Pattern Analysis of Landuse Trajectories 

The focus of this study is the change of farmland in the study 
area. According to the field investigation and some other 
literatures, the majority of the farmland in this region is cotton 
fields, which is also the decisive factor on the demand of water 
resource – the fundamental constraint on the sustainable 
development of the region, so that the change between different 
crops is not concerned. Thus, the landuse trajectory in this 
research is simply defined as the situation of changes between 
farmland and the other land cover types. A trajectory can be 
specified as o-o-c-c-c, meaning that the land was not cropped in 
1994 and 2000, transformed to farmland in 2005, and remained 
as cultivated in 2006 and 2007. For the five-epoch, two-class 
scenario, the total number of possible trajectories is 32 (25). 
Figure 2 shows all possible landuse change trajectories and the 
meaning of changes based on this classification scheme. 
 

1994 2000 2005 2006 2007

Farmland

Others

Unchanged

Cultivated

Abandoned

1994 2000 2005 2006 2007

Farmland

Others

Unchanged

Cultivated

Abandoned  
To establish and analyse landuse change trajectories, all classified 

images are integrated in geographical information system (GIS) using 
ArcGIS software with a raster format 

Figure 2. All possible landuse change trajectories based on the 
classification scheme used in this study. 

3. RESULTS 

3.1 Classification and Area Statistics 

The spatial registration accuracy for the images is adequate for 
this study with RMSE less than 0.2 pixels. On the basis of the 

assessment on only two combined classes, the classifications 
have shown high accuracy between farmland and the others. 
The overall accuracy of image classification ranges from 88.9% 
to 95.2%, with kappa coefficient ranging from 0.76 to 0.90 
(Table 2). 
 
 
Image Overall Accuracy (%) Kappa 
2007 (BJ-1) 92.5 0.837 
2006 (BJ-1) 90.7 0.799 
2005 (CBERS 2) 88.9 0.762 
2000 (ETM) 95.2 0.896 
1994 (TM) 93.8 0.877 
 

Table 2. Classification accuracy assessment 
 

Table 3 shows the area statistics of farmland, which are 
compared with some reference data found in government 
statistic books. It should be noted that the reference data do not 
include some isolated administrative units in this study area, so 
that some differences in the statistics between image and 
reference are expected. 
 
Statistics based on image classification 
Year Area (k ha) % of total area 
2007 43.5 11.7 
2006 36.1 9.5 
2005 34.4 9.0 
2000 23.5 6.1 
1994 12.2 3.2 
Reference data (the whole country) 
Year Area (k ha) Cotton (%) 
2007 35.5 99.3 
2006 32.0 98.7 
2005 28.0 97.2 
2001 20.0 88.0 
 
Table 3. Area statistics of farmland and the comparison between 

image and reference data 
 
Source of reference data, pp. Bureau of Statistics of Yuli 
Country 
(http://tjj.xjbz.gov.cn/html/xstj/652823/2007918163639.htm; 
http://tjj.xjbz.gov.cn/html/xstj/652823/20061025182742.htm). 
 

The results show that during the 13-year period from 1994 to 
2007, the area of permanent farmland has increased from 
12,190 to 43,470 ha, occupying from 3.2% to 11.7% of the total 
study area. More significantly, the increasing rate has been 
alarming. During the earlier period of 21 years from 1973 to 
1994, the area of farmland has increased by about 12,000 ha 
(before 1973, there was almost no farmland in this area) (Zhou 
et al., 2008). In comparison, during the 13 year study period, the 
area of farmland has increased by over 31,280 ha, with average 
annual growth rate of 10.3%. Especially, the average growth 
rate reaches to 12.3% in the last three years. 

 
3.2 Landuse Change Trajectories 

Figure 3 shows the spatial pattern of the area expansion of 
farmland in the study area. Generally speaking, the expansion of 
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farmland is mostly associated with the existing old farmland. 
The recent acceleration of cultivation is clearly shown by the 
large area of new cultivation in the fringe agricultural area, and 
along the river-bed where seasonal flood prevents land being 
cultivated previously. 

Table 4 lists some major trajectories of landuse change. Besides 
dominant trajectories of farmland expansion, the trajectories of 
abandoned farmland are also shown. Besides these, there are 
some marginal trajectories (i.e. the land cover changed forward 
and backward between farmland and others) that account for 
about 3.3% of the total area. 

 
Figure 3. Farmland trajectories in the study area from 1994 to 2007. 

 
Trajectory 
(07-06-05-
00-94) 

Description Area 
(k ha) % 

XXXXX old farmland 6.76 2.02 
XXXXO farmland since 2000 7.17 2.14 
XXXOO farmland since 2005 8.55 2.55 
XXOOO farmland since 2006 3.27 0.98 
XOOOO farmland since 2007 7.88 2.35 
OXXXX abandoned since 2007 1.11 0.33 
OOXXX abandoned since 2006 0.15 0.05 
OOOXX abandoned since 2005 0.25 0.07 
OOOOX abandoned since 2000 0.35 0.10 
OXOXO 
XXOOX 
… 

marginal trajectories 10.91 3.26 

OOOOO non-farmland trajectories 288.70 86.15 

Total  335.10 100.0 
(where cover type “X” = farmland; “O” = others). 

 
Table 4. Trajectories and their areas of farmland change 

4. DISSCUSION 

With the constraint of image data acquisition, it is impossible to 
acquire multitemporal images of same kind over the 13 year 
study period. Post-classification comparison method has 
therefore been employed to cope with the multi-sensor 
multitemporal images. The principal advantage of the post-
classification comparison method is that the images acquired on 
different dates by different sensors are independently classified, 
so that the problems of radiometric calibration among images of 
different dates by different sensors are minimized. However, It 
has been argued that the post-classification comparison method 
may overestimate land cover change due to uncertainties in data 
(Vanoort, 2005), including those by errors in image registration 
and classification, and misunderstanding of trajectories. The 
final accuracy of the post-classification comparison and 
trajectory analysis is largely dependent upon the accuracy of the 
initial classifications (Coppin, 2004). 

In this study, land cover types have been delineated through 
image classification. When assessing the accuracy of 
classification, reference data sets have been acquired through 
visual interpretation of images with the assistance of field data. 
Ideally error assessment when using post-classification 
comparison method should follow the traditional error 
assessment method using simultaneous ground reference data 
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(Liu and Zhou, 2004). Nevertheless it is argued that sampling 
on typical visual interpretation keys for general classes such as 
farmland and others would be sufficient for obtaining high-
quality reference data sets for classification accuracy 
assessment. 

According to the statistics provided by bureau of statistics of 
Yuli Country (Table 3), the dominant crop of the region is 
cotton and its domination has been increasing, accounting for 
88.0% of farmland in 2001 to 99.3% in 2007. This clearly 
reflects the impact of government policy in the pass years that 
regards cotton production as one of the major “growth points” 
in the regional economic development. 

Large-scale commercial cotton cropping has obviously 
increased demand on natural resources, particularly the water 
resource. When the shortage of water supply happens, newly 
cultivated farmland is more likely to be abandoned. In the year 
of 2007, the highest expansion rate of new cultivation was 
observed, while the area of abandoned farmland also reached to 
the largest. It is therefore alarming that the rapid expansion of 
agricultural land may not be sustainable and the abandoned 
farmland is at great risk to desertification. 

It is also noticed that 23.5% of the total farmland trajectories are 
classified as “marginal”. The trajectories of this kind may 
reflect three scenarios: 

1. The marginal farmland that has been cultivated and 
abandoned in succession, where the agriculture 
infrastructure (e.g. irrigation system) typically is not well 
established, 

2. The temporary small farmland areas in the fringe of the 
desert, and 

3. The image processing uncertainties due to registration and 
classification errors. 

Given the fact that the total water resource in the study area has 
not significantly changed in the last decades, the area of 
farmland has perhaps reached its limit in this region. Unless 
much more significant measures are in place to increase 
efficiency of water use (e.g. the introduction of more advanced 
irrigation techniques), the stress caused by the unbalanced 
demand and supply of water resource is expected to be 
worsened if the current trend of farmland expansion continues. 
 
 

5. CONCLUSIONS 

This study has demonstrated a trajectory-based approach to 
monitor and analyze landuse change in aridzone. In the 
environment, the supply of arable land has been considered to 
be unlimited but use of such land is severely limited by the 
supply of water. Our approach does not only consider the spatial 
pattern of expanding farmland, but also take care of situation of 
the process of land cover change (or temporal patterns of 
farmland expansion). Through using multitemporal images, the 
causes and consequences of farmland expansion can be better 
monitored and analysed, so as to provide better clues for the 
solution of sustainable development in such fragile ecosystem. 

The results show that farmland has rapidly increased in Yuli 
during the 13 year study period. In contrast, signs have been 
shown that the lack of water supply has resulted in farmland 
abandon that could cause severe land degradation due to salinity 
and wind erosion. Although challenges remain with numerous 
research questions unanswered, the study nevertheless 
encourages further effort to develop more advanced 

methodology for establishing more robust and reliable spatial 
pattern indicators, so that spatio-temporal pattern of landuse 
change can be better understood. The aim of further studies is 
also on the regional balance of water resources, corresponding 
to the dynamic change of landuse and crop cover. 
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