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ABSTRACT: 
 
The seasonal analysis of vegetation can be considered as looking for fundamental redundant information and detecting, at the same 
time, the natural changes of the vegetative cover undergone by the observed scene. From the statistical point of view, the redundant 
information can be quantified by the correlation coefficients between the multi-temporal images while the natural changes can be 
considered as the mutual information between the transition zones of the observed scene. For detecting and emerging the zones of 
transition and preserving at the same time the zones of vegetation temporal evolution stability, it is interesting to create new images 
in which the correlation between the images is vanished and the mutual information is minimized. To reach such purpose, we have 
developed a new approach for seasonal vegetation analysis based on a new statistical multi-variate method called independent 
component analysis (ICA). 
 
 

                                                                 
 

1. INTRODUCTION 

Multispectral image processing is a promising tool for the 
analysis of vegetation in remote sensing imagery, particularly in 
areas with low vegetation cover (Chen, 1998a ; Chen, 1998b ; 
Gracia and Ustin, 2001 ; Shabanov et al., 2001; Kogan et al., 
2003; Frank and Mentz, 2003). Seasonal vegetation analysis in 
the absence of land cover change is much more challenging 
than land cover analysis. A variety of multispectral vegetation 
indices have been developed in order to detect these changes 
(Chen, 1998b ; Kogan et al., 2003; Frank and Mentz, 2003). 
However, these indices are insufficient for seasonal vegetation 
analysis, especially when the number of spectral bands is 
important, in which make full use of the available spectral 
images becomes impossible (Frank and Mentz, 2003). In 
addition, the developed vegetation indices are limited in the 
detection of low vegetation cover because of varying 
background signals (Frank and Mentz, 2003).  

The seasonal analysis of vegetation can be considered as 
looking for fundamental redundant information, which exists 
between the multi-temporal remote sensing data (acquired for 
the same scene) and detecting and emerging, at the same time, 
the natural changes of the vegetative cover undergone by the 
observed scene. The redundant information characterizes the 
stability in the vegetation evolution in the areas that are not 
undergone to the natural changes across the time. The natural 
changes, however, characterize the transitions across the time 
between the states of the natural change zones of the scene. 
From the statistical point of view, the redundant information 
can be quantified by the correlation coefficients between the 
multi-temporal images while the natural changes can be 
considered as the mutual information between the transition 
zones. For emerging the transition zones and preserving at the 
same time the zones of vegetation temporal evolution stability, 
it is interesting to create new images in which the correlation 

between these images is vanished and the mutual information is 
minimized. To reach such purpose, we have developed a new 
approach of seasonal vegetation analysis based on a new 
statistical multivariate method called independent component 
analysis (ICA).  

ICA is a useful extension of standard Principal Component 
Analysis (PCA) (Chitroub, et al., 2001 ; Chitroub, et al., 2004 ; 
Karhunen and Joutsensalo, 1994). As the name implies, ICA is 
to find the transformation such that the resulting components 
are as statistically independent from each other as possible. It 
takes into account of higher order statistical properties and its 
components are mutually independent with respect to these 
higher order statistics, thus making ICA more truly independent 
that PCA (Cardoso, 1999 ; Lee et al., 1999). The ICA model is 
very suitable for neural network realization (Hyvärinen, 1999 ; 
Lee et al., 2000). Most application of ICA so far has been on 
Blind Signal Separation (BSS) of unknown source signals from 
their linear mixture for which ICA obviously is useful. The use 
of ICA for images has been much limited. We believe that ICA 
can be useful in general in image and signal processing 
(Chitroub, et al., 2004). In this paper, we will demonstrate some 
potential advantages of ICA in remote sensing study. We are 
concerned with the seasonal analysis of vegetation. The 
remainder of this paper is organized as follows. The proposed 
model is exposed in detail in section 2. Experiments performed 
on the multi-temporal Landsat-TM images (they cover 
AlQassim region in Saudi Arabia), are given and commented in 
section 3. We conclude the paper in the last section. 

 

2. ICA – BASED METHOD FOR SEASONAL 
VEGETATION ANALYSIS 

In this paper, we demonstrate the usefulness of ICA for 
seasonal vegetation analysis. For that, a PCA-ICA neural 
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network model is proposed (Figure 1). With the PCA part of the 
model, the Principal Component (PC) images are decorrelated 
and consequently the redundant information is annulled 
between the PC images. With ICA part of the model, we show 
that in the Independent Component (IC) images the mutual 
information is reduced compared to the Principal Component 
(PC) images. This implies that the zones of transition are 
detected and emerged and, at the same time, the zones of 
vegetation temporal evolution are preserved in the produced IC 
images.  
 
2.1 Principal Component Extraction 

The PCA-based part (Figure 2) is devoted to extract the PC 
images. It is based on the simultaneous diagonalization concept 
of the two matrices Σx (input images covariance matrix) and Σn 
(covariance matrix of the noise), via one orthogonal matrix A 
(Chitroub, et al., 2004). This means that the PC images (Y) are 
uncorrelated and have an additive noise that has a unit variance. 
This step of processing allows us making our application 
coherent with the theoretical development of ICA (Lee et al., 
2000).  

Based on the well-developed aspects of the matrix theories and 
computations, the existence of A is proved in (Chitroub, et al., 
2004) and a statistical algorithm for obtaining it is proposed. 
Here, we propose a neuronal implementation of this algorithm 
(Chitroub, et al., 2001) with some modifications (Figure 2). It is 
composed of two PCA neural networks that have a same 
topology. The lateral weights cj

1, respectively cj
2 forming the 

vector C1, respectively C2, connect all the first m-1 neurons 
with the mth one. These connections play a very important role 
in the model since they work toward the orthogonalization of 
the synaptic vector of the mth neuron with the vectors of the 
previous m-1 neurons. The solid lines denote the weights wi

1, cj
1, 

respectively wi
2, cj

2, which are trained at the mth stage, while 
the dashed lines correspond to the weights of the already trained 
neurons. Note that the lateral weights asymptotically converge 
to zero, so they do not appear between the already trained 
neurons. The first network of Figure 2 is devoted to whitening 
the noise, while the second one is for maximizing the variance 
given that the noise is being already whitened. Let X1 be the 
input vector of the first network. After convergence, the vector 
X is transformed to the new vector X’ via the matrix U = W1.Λ-

1/2 , where W1 is the weighted matrix of the first network, Λ is 
the diagonal matrix of eigenvalues of Σn and Λ-1/2 is the inverse 
of its square root. Next, X’ be the input vector of the second 
network. It is connected to M outputs, with M ≤ N, 
corresponding to the intermediate output vector noted X2. Once 
this network is converged, the PC images to be extracted 
(vector Y) are obtained such as: Y = AT.X = U. W2.X, where W2 
is the weighted matrix of the second network. The activation of 
each neuron in the two parts of the network is a linear function 
of their inputs. The kth iteration of the learning algorithm, for 
both networks, is:  
 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( kc.kq.kq.kkc1kc
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mm

2
mm
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−+=+
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β
β

)    (1) 

 
where P and Q are, respectively, the input and output vectors of 
the network. β(k) is a positive sequence of learning parameter. 
The global convergence of the PCA-based part of the model is 
strongly dependent on the parameter β. The optimal choice of 
this parameter is well studied in (Chitroub, et al., 2001). 

2.2 Independent Component Extraction 

The M inputs of the ICA network model (Figure 3) are the PC 
images. The M output neurons correspond to the IC images 
(vector Z), then Z = B.Y, where B is the separating (or de-
mixing) matrix that we want to determine.  

ICA can be carried out by using many different methods 
(Chitroub, et al., 2004 ; Cardoso, 1999 ; Karhunen and 
Joutsensalo, 1994 ; Lee et al., 1999 ; Hyvärinen, 1999). In this 
paper, we have used the Informax algorithm to learn the matrix 
B. Using the concept of differential entropy and the invertible 
transformation of Z = B.Y, the mutual information between the 
outputs is minimized. This means that finding an invertible 
transformation B that minimizes the mutual information is 
approximately equivalent to finding directions in which the 
mutual information among the output components is minimized. 
The weight update rule will then be a gradient descent in the 
direction of maximum joint entropy. The mathematical details 
of the learning process is out of the scope of this paper and the 
reader could be consulting, for more details, the following 
references (Chitroub, et al., 2004 ; Karhunen and Joutsensalo, 
1994 ; Lee et al., 1999 ; Lee et al., 2000).  

Using the concept of differential entropy and the invertible 
transformation of Z = B.Y, the mutual information between the 
outputs is:  
 

( ) ( ) ( ) ( Byz detlogHzHI M

1i
i +−= )∑ =

                        (2) 
 

where H(Zi) are the marginal entropies of the outputs and H(Z) 
is the joint entropy of Z. By constraining zi to be uncorrelated 
and of unit variance, this implies that: ( ) 1Edet T =z.z . As the 
negentropy is a measure of non-Gaussianity, that is:  
 

( ) ( ) ( )zzz HHJ Gaussian −=                                            (3) 
 

So the mutual information and negentropy differ only by a 
constant that does not depend on B and the sign, that is:  
 

( ) ∑ =
−=

1i
zI Cz                                                          (4) 

 

which means that finding an invertible transformation B that 
minimizes the mutual information is approximately equivalent 
to finding directions in which the sum of non-Gaussianities of zi 
is maximized. Maximizing the joint entropy H(Z) can 
approximately minimize the mutual information among the 
output components:  
 

( )iii vgz =                                                                     (5) 
 

where ( )ii vg  is an invertible monotonic non-linearity and V= 
B.Y. If the mutual information among the outputs is zero, the 
mutual information before the non-linearity must be zero as 
well since the nonlinear transfer function does not introduce 
any dependencies. Thus, the relation between zi, vi, and ( )ii vg  
is such as:  
 

( ) ( ) ( ) iiiii vvgvpzp ∂∂=                                         (6) 
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By this relationship, g(V) must be chosen so that its derivative 
approximately forms a probability distribution function for the 
sources to be recovered. The only remaining parameters to 
adapt are the synaptic weights that can be found by maximizing 
H(Z)  with respect to B. The weight update rule will then be a 
gradient descent in the direction of maximum joint entropy. 

More computationally efficient approaches have been proposed 
in (Lee et al., 2000), the reader can obtain more of the 
mathematical details in (Chitroub et al., 2006). If we define the 
term score function ( )vϕ  as:  
 

( ) ( )( ) ( )vvvv pp ∂∂=ϕ                                              (7) 
 

then an efficient weight update is: 
 

( )( )BIB vv .. T-ϕ∝Δ                                                  (8)                  
 

The form of  plays a crucial role because it is function of 
the transfer and therefore a function of the source estimate. For 
the sub-Gaussian sources, the form of  is such as: 

( )vϕ

( )vϕ
 

( ) ( )vvv tanh-=ϕ                                                       (9) 
 

where  is the hyperbolic tangent. For the super-Gaussian 
sources,  takes the form:  

( ).tanh

( )vϕ
 

( ) ( )vvv tanh+=ϕ                                                      (10) 
 

The switching between the sub-Gaussian and super-Gaussian 
learning rule gives the following learning rule for the ICA – 
part model (Lee et al., 1999): 
 

( )( )BIB vvvv ... TT.tanh- −Κ∝Δ                         (11) 
 

K is a N-dimensional diagonal matrix with elements 
( )( )i4 vksign .  is the kurtosis of the source estimate vi. The 

switching parameter  can be derived from the general 
stability analysis of separating solutions (Cardoso, 1996 ; 
Hyvärinen, 1999). 

( )i4 vk
( )i4 vk

 
 

3. EXPERIMENTAL RESULTS 

We present in this section our preliminary results. More 
detailed study and more completed results are under 
development. They will be subject of the future works for 
publication. A real multi-temporal data provided by the 
Landsat-TM are used to evaluate the proposed method. The 
data were acquired over the AlQassim region in Saudi Arabia 
(140x235pixels) during April and June 1994. The fifth bands of 
the two sets of data are shown in Figure 4. The first three 
extracted PC images are given in Figure 4. The first 
components have the best image quality (contrast). Figure 5 
shows the extracted IC images. These images are different to 
the PC images. In the PC images the correlation is vanished and 
consequently the redundant information is minimized. In these 
images the zones of vegetation temporal evolution stability are 

well mapped since they are characterized by the variance of the 
PC image. This variance is maximized in the first PC images. 
While the contrast between the input spectral images, which 
characterize the differences between the spectral bands, is 
mapped the last PC images that are much noised and 
consequently it is not possible to overcome the information 
about the natural changes undergone by the observed scene.  

However, in IC images the mutual information between the PC 
images are minimized and so the natural changes, which can be 
considered as the mutual information between the transition 
zones of the PC images, are emerged. In the IC images, the 
zones of vegetation temporal evolution stability are also 
preserved as they are in PC images. This can be quantified by 
computing the image of the vegetation stability zones and the 
image of the vegetation transition zones (natural changes) of the 
scene both from the first and the second extracted IC images 
(Figure 6). 

 

4. CONCLUSION 

In this paper, we have presented a new method for seasonal 
vegetation analysis. The method is based on the emergent 
technique, which is the independent component analysis (ICA). 
The basic idea is to consider that the natural change undergone 
by the observed scene can be detected and emerged if the 
mutual information that exists between the images is minimized. 
This task can be realised by the compound neural network 
model PCA-ICA. We have presented here the main outlines of 
the theoretical analysis of such model. More complicated 
mathematical development of the proposed method cannot be 
given here and it will be subject of the future works for 
publication. Although the preliminary results, given in this 
paper, needed to be evaluated by an objective and mathematical 
criteria, they are, however, of interesting in the sense that the 
extracted IC images are very informative about the surface state 
of the observed scene, concerning the stability and transition 
zones of the vegetation, compared to the extracted PC images. 
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Figure 1. PCA-ICA neural network model 
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Figure 2. PCA-based part of the model 
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Figure 3. ICA-based part of the model 

 

 

 

 

 

(a)                                (b)                                (c)                                (d)                                (e)                               (f)  

Figure 4. (a) The fifth spectral band of April 94, (b) The fifth spectral band of June 94, (c) The first PC of April 94 data set, (d) The 
second PC of April 94 data set, (e) The first PC of June 94, (f) The second PC of June 94 

              

       Figure 5. The first and the second IC images                              Figure 6. The stability and transition zones of the vegetation 
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