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ABSTRACT: 
 
Soil moisture is a governing parameter in many complex environmental processes from the disciplines of meteorology, hydrology 
and agriculture. Since rainfall is partitioned into runoff and infiltration, the soil moisture content allows for direct information on 
further infiltration capability and expected runoff behavior. Spatial and temporal soil moisture variability are thus important factors 
to be included into predictive agricultural, hydrological and climate models. Furthermore, long term soil moisture pattern analyses 
can support the derivation of regional trends. In this paper we present the results of analyses of the 15 year long, remote sensing 
based soil moisture time series of TU Wien. Based on ERS scatterometer derived data soil moisture has been derived at a spatial 
resolution of 50km, and a temporal resolution of 3-4 days globally since 1992. This time series is currently being extended and 
reprocessed with 25km Metop Ascat derived data. We have processed the time series with respect to global anomaly derivation, 
whereas an anomaly in the soil moisture dataset depicts “wetter than normal” or “drier than normal” conditions with respect to the 
long term mean. Findings indicate that extreme events such as confirmed floods and droughts are clearly represented in the dataset. 
Anomaly analyses in months prior to known extreme events indicate that the time series holds a strong potential for flood early 
warning activities. Furthermore, long term trend derivation allows to depict regions, which have become significantly wetter or drier 
over the course of the last 15 years. Trends investigated for Mongolia and Australia correlate with trends from in-situ station data. 
We consider the TU Wien time series to have a high potential for further detailed global long term trend analyses. 
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1. INTRODUCTION 

1.1 Remote Sensing of Soil Moisture 

Soil moisture is a governing parameter in many complex 
environmental processes from the disciplines of meteorology, 
hydrology and agriculture. Since rainfall is partitioned into 
runoff and infiltration, the soil moisture content allows for 
direct information on further infiltration capability and expected 
runoff behavior. Spatial and temporal soil moisture variability 
are thus important factors to be included into predictive models 
(Scipal et al. 2005, Wagner et al. 2007a, Koster et al. 1999, 
Zhao et al. 2006, Pellarin et al. 2006). 
 
In-situ soil moisture measurements are costly and work 
intensive to perform and are thus only available in limited 
regions of the world (Scipal 2005, Hollinger and Isard 1994). 
Major in-situ soil moisture networks exist in China, Russia, the 
Ukraine, and parts of the US (Scipal 2002, Wagner et al. 2007b, 
Jackson et al. 1999, Robock et al. 2000). However, long term 
temporal coverage and sampling intervals vary strongly. Due to 
these reasons and due to the very sparse spatial representation 
these stations do not enable to represent country-wide-, 

continental- or even global soil moisture patterns. Thus, remote 
sensing has come to play a major role in large scale soil 
moisture assessment during the past two decades (Engman and 
Chauhan 1995, Wagner et al. 1999, Wagner et al. 2007a, 
Jackson 1993). Due to the cloud cover problem approaches 
based on optical or thermal satellite data are strongly limited for 
global applications. Therefore, especially microwave remote 
sensing based on instruments such as the scatterometers 
onboard ERS-1, ERS-2, or the AMSR radiometer onboard of 
AQUA as well as the advanced scatterometer, ASCAT, onboard 
the new satellite METOP, are employed for the derivation of 
large scale soil moisture products (Wagner et al. 1999, de 
Ridder 2000, Njoku et al. 2003). 
 
The significance of global soil moisture products has been 
presented by numerous authors. Many of them applied the ERS-
1/2 scatterometer derived soil moisture time series provided by 
Vienna University of Technology (in following: TU Wien data 
set); for example to improve rainfall simulation in eastern China 
Zhao et al. 2006), to establish moisture-runoff relationships for 
different catchments (Scheffler et al. 2003, Scipal et al. 2005), 
or for data assimilation purposes. Furthermore, numerous 
authors successfully validated the ERS derived TU Wien soil 
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moisture time series with regional soil moisture in situ data (e.g. 
Scipal 2002, Wagner et al. 2003, Zhao et al. 2006). 
 
Compared to synthetic aperture radar (SAR) systems 
scatterometers offer multiple incidence angles for each overpass, 
which enables to better account for the effects of vegetation and 
surface roughness. Furthermore, contrary to SAR, lower 
resolution scatterometer sensors allow to map the Earth surface 
within less than three days. Here a coarse spatial resolution of 
50 km (ERS Scat) or 25 km (ASCAT) is accepted, since an 
excellent temporal resolution can be achieved. Soil moisture 
can be investigated at two different spatial scales. The first is 
the spatial scale below 100 meters, where spatial and timely soil 
moisture variability are mainly driven by vegetation, soil type 
and topography (Scipal et al. 2005, Vachaud et al. 1985). The 
second scale at several kilometers represents soil moisture 
variability induced by atmospheric forcing effects, thus mainly 
being influenced by climatic conditions and large scale 
precipitation events (Vinnikov et al. 1999, Ceballos et al. 2002). 
Scatterometer derived soil moisture data at the scale of 25 to 50 
km therefore contains information about large scale 
meteorological events. Furthermore, especially spatio-temporal 
changes in longer time series of data with expected seasonal 
soil moisture patterns can indicate the occurrence of slow onset 
natural hazards such as floods or droughts. 

 

 
1.2 The TU Wien Dataset: ERS-Scatterometer derived 
Surface Moisture 

The active ERS scatterometer with three sideways looking 
antennae collects backscatter measurements in the 5.3 GHz 
domain (C band) with vertical polarization over an incidence 
angle range from 18° to 57°. Global coverage is achieved every 
3-4 days (Scipal et al. 2005). Strictly speaking, the 
backscattered signal σ0 is mainly a function of dielectric 
properties of materials depending on frequency, f, polarization, 
pp, and incidence angle θ. The dielectric constant of a material 
mainly depends on its water content. The function  S( f ,θ ) 
describes backscattering according to surface roughness and is 
also influenced by frequency and incidence angle. This basic 
principle of dielectric properties and geometric surface structure 
is used by the majority of electromagnetic backscattering 
models to derive soil moisture (Knabe 2004). 
 
 

σ 0( pp f ,θ ) = D( f , pp,θ ) ⋅ S( f ,θ )  (1) 
 
 
Since one is only interested in the part of the signal, which 
represents the moisture content other influences need to be 
corrected for. Heavily vegetated areas like rainforests are 
masked out from the TU Wien data set. In dense forest areas 
volume scattering dominates and the backscattered signal from 
the ground covers a too small portion of the overall 
backscattered signal. Furthermore, snow covered areas are 
masked to exclude areas, where no statement about soil 
moisture is possible. Coastal zones and inland water bodies are 
also excluded. Incidence angle dependencies and effects of 
surface roughness, heterogeneous vegetation cover, and land 
cover are fully accounted for with the change detection 
approach implemented and presented by Wagner et al. (1999). 
Thus, after corrections the relationship between backscatter 
(normalized to an incidence angle of 40°, σ0 (40)) and soil 
moisture variability is linear (Scipal 2002). The change 
detection approach thus only requires a time series of data to be 

available. From this time series surface soil moisture 
information equivalent to the degree of saturation in relative 
units, ranging between 0-100 %, can be retrieved. In this 
change detection method the current backscattering coefficient 
is compared to the highest and lowest measurement record 
(referred to as σ0

wet and σ0
dry respectively) for this spatial 

location within the available time series. If σ0
dry and σ0

wet 
represent a completely dry soil surface and a saturated soil 
surface then ms is equal to the degree of saturation, equaling the 
soil moisture content in percent of porosity. ms can be derived 
from every backscatter measurement for a point on earth and is 
thus available every 3-4 days. From the TU Wien Global Soil 
Moisture Archive surface moisture data sets can be extracted on 
a weekly, ten-day, or monthly basis for every defined area. 
 
 

2. METHODS FOR TIME SERIES ANALYSES 

2.1 Method: Anomaly Extraction and Analyses 

 

 

Soil moisture anomaly Feb. 1999 

GPCC anomaly Feb.1999 

 
Figure 1. “La Nina” (post El Niño event) related drought in 
south-eastern China as observed in soil moisture anomaly data 
(top), and highly correlated also occurring in GPCC data 
(gridded precipitation data of the German Weather Service) 
 
As a first focus of analyses, we extracted major anomalies from 
the time series. The term anomaly refers to the deviation of 
surface soil moisture at a given spatial location with respect to 
the time series mean of all soil moisture values for this month. 
The extracted strong anomalies reflect severe drought and flood 
conditions over the course of over 15 years in many countries 
worldwide. The following figure 1 shows an example, 
representing a “La Niña” related drought situation in China in 
February 1999 after the very strong 1997/1998 El Niño. In the 
upper part of the figure green areas are masked out areas (snow 
cover), grey areas indicate soil moisture conditions within the 
normal range, while blue areas indicate wetter than normal 
conditions and yellowish to brown areas indicate drier than 
normal conditions. 
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2.2 Method: Time Series Long-Term Trend Analyses 

The second analysis focused on the extraction of trends from 
the 15 year time series. For a global context, we depict, which 
areas have become wetter or drier between 1992 and today. A 
period of 10-15 years is not enough to conclude on large scale 
climatic change – however, no other soil moisture time series of 
this length exists. It is furthermore the first time that the TU 
Wien time series underwent a trend analyses. Some areas show 
no change at all, while in several regions worldwide a clear 
tendency towards drier or wetter soil conditions could be 
observed. We furthermore investigated critically, which areas 
of the global dataset are suitable for trend analyses. “Suitable” 
means that, firstly, landcover conditions should favor unbiased 
surface moisture extraction, and secondly, enough 
measurements need to be available. Thus, we firstly masked the 
data set to work with areas, which have favorable conditions for 
highly accurate surface moisture extractions (see figure 2) 
 

 
Figure 2. The considered study area. Since soil moisture 
derivation works best in unforested areas, a mask for the present 
analyses has been generated from SPOT-based GLC-product 
derived land-cover information. Only areas with at least 50% 
grassland or Savannah were considered. 
 
Examples of variation in the number of measurements per 
month over the course of the time series are presented in figure 
3. Due to sensor problems and data downlink capacities not 
every spot on the earth is evenly covered with measurements. 
 

 
Figure 3. Variation of data availability over time – from around 
25 measurements per month to no data acquisition. a) 1994 
December; b) 2000 July; c) 2001 February; d) 2007 January. 
Overall the time-series between 1992 and January 2001 shows 
optimal global coverage. From 2001 to mid-2003 sensor 
problems lead to a gap in data acquisition. Since August 2003 

data is only available within the visibility range of a limited 
number of ground receiving stations. 
 
The time series (only for the unmasked areas from figure 2 was 
then analyzed in the following way: 
 

1) Two arrays were created (for wet anomalies and dry 
anomalies) with the dimension 15 x 12 (15 years time 
series, 12 months per year). 

2) For these arrays, the number of wet (respectively dry) 
anomalies as a percentage of the total number of 
measurements for that month has been calculated. A 
wet anomaly is defined as a surface soil moisture 
measurement, which is above the long-term mean for 
that day of the year plus 10 times the noise level 
associated to that long-term mean. A dry anomaly is 
defined as a surface soil moisture measurement , 
which is below the long-term mean for that day of the 
year minus 10 times the noise level associated to that 
long-term mean 

3) The yearly means of the percentage values in the 
arrays were calculated by taking the arithmetical 
mean of the 12 monthly values, for each year 
resulting in 2 arrays of 15 years each. 

4) Then a linear "a+bx" line was fit to each of the arrays 
from Step 3. The 2 plots of figure 7 in the results 
section for time series analyses show the "b" value of 
this fit, hence its unit is "percentage per year". 

 
 

3. RESULTS 

In the following two subchapters we present 1) results of 
anomaly analyses in the context of flood and drought 
monitoring and 2) results for trend analyses of the complete 
global time series. 
 
3.1 Results of Anomaly Analyses 

Among several example cases investigated the representation of 
major floods and droughts, e.g. the 1999 drought in Southeast 
China (figure 1) has been confirmed. 
 
Furthermore, the potential of the 15 year time series for flood 
forecasting has been analyzed. Figure 4 depicts the powerful 
potential of the TU Wien time series for possible early warning 
scenarios. A strong flood hit the UK in November 2000. 13 
people died, 6000 inhabitants had to be dislocated, and the 
estimated damage exceeded 3 Bio. USD. 22 rivers and an 
overall area of 96950 km² were affected. The Dartmouth Flood 
Observatory assigned Severity Class 3 
 
The upper sequence of images in figure 4 depicts surface soil 
moisture from January to December for the year 2000. Dark 
blue areas indicate wettest conditions, light blue areas slightly 
wet conditions and yellowish to dark brown areas drier to 
completely dry conditions. The lower sequence depicts 
anomalies. Grey areas indicate no outstanding / deviating 
behavior while blue areas indicate “wetter than normal” 
behavior and yellow-brownish areas “drier than normal” 
conditions with respect to the 15 year monthly mean. It is 
obvious that during the months January to March soil moisture 
values in the year 2000 are high. However, the anomaly 
sequence indicates that this is rather normal, except for some 
slightly wetter occurrences in Ireland and Scotland in February. 
During the summer, soil moisture is low and the anomaly 
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sequence indicates that also this behavior is to be expected. 
Very differently appear the months September to November. 
Already in September it can be seen that most of the UK is 
much wetter than usual. Soils are by far not saturated (still some 
yellow areas below 50% soil moisture), however, according to 
expectations this month should be drier. In October soil 
moisture values are high. The anomaly sequence again indicates 
“wetter than normal” conditions for the whole country. The 
same applies for November – the month when soils were so 
saturated that all buffer capacity had diminished and increased 
surface runoff lead to severe floods. Comparing the two time 
intervals (Jan-Mar and Sept-Nov) it can clearly be seen that the 
anomaly time series could support the prediction of future soil 
moisture saturation situation and flood danger. 
 

 
 
Figure 4: Upper sequence: Soil moisture between 0-100% 
saturation (dark brown to dark blue), lower sequence: soil 
moisture anomalies with respect to the long term mean of the 
specific month (grey: no deviation, yellow: drier than expected, 
blue: wetter than expected) 
 
3.2 Time series long term trend analyses 

During time series processing the whole global soil moisture 
data set underwent the procedure described under subchapter 
2.2.. Thus, the percentage of wet anomalies and the percentage 
of dry anomalies had to be calculated for each month and all 
years. Figure 5 depicts the percentage of wet anomalies, which 
occurred during the month of July for the two years 1996 and 
1998. Pink areas indicate regions with no obvious deviations, 
while blue-green to yellowish-red tones indicate a large number 
of outstandingly wet measurements. In July 1996 most areas 
(except some parts of Mongolia and the western Sahel) show 
now obvious changes. In July of 1998 (a strong El Niño year) 
the whole Sahel zone, as well as larger parts of Australia, 
Central Asia, and the Great Plains show anomalous behaviour. 
 
Figure 6 shows the global trend for areas to become wetter 
(upper) or drier (lower). Based on figure 6 we can observe that 
there are some regions with very outstanding trends concerning 
soil moisture deviation from the mean and an increase in wet 
and dry anomalies. 
 
It is obvious that the northern part of Australia has become 
slightly wetter over time, as have parts of south-eastern Africa. 
Furthermore, Mongolia shows some very impressive trends, 
indicating that especially the eastern part of the country has 
become significantly drier over time. To investigate if these 
observations coincide with meteorological ground station 
measurements we analyzed precipitation-, temperature- and 
“number of rainy days” information from Australian and 
Mongolian stations. 
 
While the upper and lower figure 6 are mostly complementary 
(in areas , where the percentage of wet anomalies increase, the 
number of dry anomalies usually decreases), there are also 
some regions, where these complementarities cannot be 
observed. In these regions an increase of extreme events is 
likely. 

 

 
 

Figure 5: Percentage of wet anomalies for the month July in the 
years 1996 and 1998. 
 
 

 
 
Figure 6: Global trend for areas to become wetter (upper) or 
drier (lower), respectively areas with an increase in wet or dry 
anomalies. 
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Figure 7-a shows surface soil moisture (black), with the yearly 
mean reproduced for all years (orange), for a location near 
Sainshand, southeast Mongolia. The difference between the 
surface moisture and the mean is shown in figure 7-b. Rainfall-, 
snow and temperature information has been available from 
ground stations (7-c). Figure 8-d depicts the total precipitation 
in mm (black line) and the number of rainy days per year (pink 
line). It can be noted that after the data gab from 2001-2005 (7-
a, 7-b) the surface moisture signal is much lower than during 
the measuring period before. The decrease is not sensor related. 
This behaviour could be observed from numerous locations in 
eastern Mongolia (which also all show a decrease in the number 
of rainy days and precipitation in mm), such as the stations in 
Bajndelger and Barum-Urt, while other areas in other countries 
show a completely different behaviour. 
 

 
 
Figure 7: Surface soil moisture development for a station near 
Sainshand, Inner Mongolia. a) surface moisture (black) and 
long term mean (orange), b) difference between the two, c) 
ground station information d) precipitation and number of rainy 
days. 
 
Figure 8 shows a similar plot for a location in Northeast 
Australia near Palmerville. According to this figure there is a 
slight increase in surface moisture especially since 1998 (8-b: 
curve is starting to slightly move upwards compared to the 
zero-line) However, this is only a shorter phenomenon, which 
can not be further observed after 2001 (no data). 
 

 
 
Figure 8: Surface soil moisture development for a station near 
Palmerville, Australia. a) surface moisture (black) and long 
term mean (orange), b) difference between the two, c) ground 
station information d) precipitation and number of rainy days 
(from Australian quality controlled rainfall data, available daily 
since the 1890’s from the Australian Bureau of Meteorology) 
 
 

4. CONCLUSION 

Usually, the derivation of trends, analyzed under the scope of 
climate change phenomena or related studies is performed on 
time series of 20+ years. One could thus argue that the TU 
Wien soil moisture time series is not yet long enough to derive 
meaningful trends. However, previous studies, anomaly 
analyses and the finding of this study indicate that the soil 
moisture time series processed by TU Wien has a large 
potential for long term trend analyses. It is the only time series 
of its kind existing since 1992. Results presented within 
grassland- and savannah-dominated areas clearly indicate 
regions, which have become drier or wetter over time. These 
findings could be verified through available in-situ data for a 
few selected sites. Currently the ERS-Scatterometer based time 
series is being extended and reprocessed with first data derived 
from the METOP Advanced Scatterometer (Ascat). Therefore, 
the extension and continuity of the time series based on two 
sensors is guaranteed. Even though spatial coverage is not 
always global, and temporal gaps do exist, the time series 
allows for the observation of short term trends, and the 
detection of the onset of probable long term trends. Furthermore, 
the time series clearly reflects all global deviating events such 
as strong droughts, floods, or El Niño events. We propose to 
investigate the TU Wien dataset further, focussing on medium- 
to long-term trend analyses and frequency analyses of 
anomalous events. 
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