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ABSTRACT:  
 
In this paper, a practical scheme for assimilation of multi-temporal and multi-polarization ENVISAT ASAR data in rice crop model 
to map rice yield has been presented. To achieve this, rice distribution information should be obtained first by rice mapping method 
to retrieve rice fields from ASAR images, and then an assimilation method is applied to use the temporal single-polarized rice 
backscattering coefficients which are grouped for each rice pixel to re-initialize ORYZA2000. The assimilation method consists in 
re-initializing the model with optimal input parameters allowing a better temporal agreement between the rice backscattering 
coefficients retrieved from ASAR data and the rice backscattering coefficients simulated by a coupled model, i.e. the combination of 
ORYZA2000 and a semi-empirical rice backscatter model through LAI. The SCE-UA optimization algorithm is employed to 
determine the optimal set of input parameters. After the re-initialization, rice yield for each rice pixel is calculated, and the yield map 
over the area of interest is produced finally. The scheme was applied over Xinghua study area located in the middle of Jiangsu 
Province of China by using the data set of an experimental campaign carried out during the 2006 rice season. The result shows that 
the obtained rice yield map generally overestimates the actual rice production situation, with an accuracy of 1133 kg/ha on validation 
sites, but the tendency of rice growth status and spatial variation of the rice yield are well predicted and highly consistent with the 
actual production variation.  
 
 

1. INTRODUCTION 

Since the launch of ERS satellites and Radarsat, a considerable 
amount of programs has been set up to investigate the capability 
and efficiency of radar data in agricultural monitoring. For rice 
crop, SAR data has been successfully applied for rice mapping 
and growth parameters inversion (Le Toan et al., 1997; Ribbes 
& Le Toan, 1999; Shao et al., 2001; Dong et al., 2006; Tan et al., 
2006; Yang et al., 2008a; Yang et al., 2008b). Physical models 
have also been developed to study the interaction between 
backscatter and rice canopy (Le Toan et al., 1997; Dong et al., 
2006; Koay et al., 2007). The results prove that the rice crop is 
in favor of radar monitoring. However, among the 
aforementioned research activities, the potential of SAR data in 
rice yield prediction has not been fully investigated. 
 
In this paper, a practical scheme for rice yield estimation and 
mapping rice yield based on ASAR (Advanced Synthetic 
Aperture Radar) data is presented, in which the assimilation 
strategy (Moulin et al., 1998) is adopted, and validated using the 
data acquired in 2006 over the Xinghua study area located in the 
middle of Jiangsu Province of China.  
 
 

2. MATERIALS AND METHODS 

2.1 Scheme for mapping rice yield based on ASAR data 

The scheme for rice yield estimation is based on multi-temporal 
and multi-polarization ASAR data (Figure 1). It consists of two 
parts for realizing the whole process. In the first part, ASAR 
data is employed with rice mapping method to obtain the rice 
distribution map over the area of interest. The rice map is used 
to mask all the ASAR images to select only rice fields and 
retrieve rice backscattering coefficients. The temporal rice 
backscattering coefficients corresponding to each rice pixel of 
the rice map are then grouped for each polarization respectively. 
It should be noted that the accuracy of rice yield estimation is 
somehow influenced by the rice mapping accuracy. The key to 
rice mapping is to find proper data acquisition dates and/or data 
of proper polarizations to maximize the distinction between rice 
and other land cover objects (Le Toan et al., 1997; Ribbes & Le 
Toan 1999). Therefore, multi-temporal and multi-polarization 
radar data are recommended for rice mapping, because higher 
rice mapping accuracy of more than 80% has been reported by 
several studies with the threshold or supervised classification 
method (Chen et al., 2007; Yang et al., 2008a; Yang et al., 
2008b).  
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Figure 1. Scheme for mapping rice yield based on ASAR data 
 
 

Acquisition Day of year (DoY) Polarization Orbit Spatial resolution Incidence angle Rice phenological stage
06/30/2006 181 HH/VV Descending 30 m 19.2°-26.7° Tillering stage 
08/04/2006 216 HH/VV Descending 30 m 19.2°-26.7° Jointing stage 
08/19/2006 231 HH/VV Ascending 30 m 19.2°-26.7° Booting stage 
09/23/2006 266 HH/VV Ascending 30 m 19.2°-26.7° Grain filling stage 

 
Table 1. An overview of the acquired ASAR data and the phenological stage of rice at each of the acquisition date 

 
 

The second part in this scheme is mainly shown in the dashed 
box in Figure 1, where an assimilation method is adopted to 
calculate the rice yield for each rice pixel. The assimilation 
method is the direct use of observed rice backscattering 
coefficients to re-initialize the rice growth model ORYZA2000 
(Bouman et al., 2001). During the assimilation, ORYZA2000 is 
coupled with a rice backscatter model using LAI as an essential 
link to simulate rice backscattering coefficients. Here, a 
semi-empirical rice backscatter model, based on the Cloud 
model (Attema & Ulaby, 1978), is used for simplicity and 
practicability. But, before it can be used, the model should be 
calibrated to determine the polarization, in which the temporal 
rice backscatter can be simulated with a higher accuracy. The 
assimilation method re-initializes the ORYZA2000 model with 
optimal input parameters allowing a better temporal agreement 
between the rice backscattering coefficients simulated and those 
observed. The global optimization algorithm SCE-UA (Duan et 
al., 1992; Duan et al., 1993) is applied to determine the optimal 
set of input parameters. After the re-initialization, rice yield 
corresponding to each rice pixel is calculated by ORYZA2000, 
and finally, the rice yield map of the area of interest is 
produced. 
 
2.2 Study area and data description 

The Study area is a flat agricultural area located in the middle of 
Jiangsu Province of China, approximately 32º51′N-32º58′N and 
120º00′E-120º06′E. The crop system here is a two-crop rotation 
system, with wheat in winter and rice in summer. During the 
rice season, more than 95% of rice is direct-seeded. The 
dominant rice species is japonica rice with a life span of about 
135 days.  
 
In 2006, four rice growth monitoring plots A, B, C and D with 
size about 10 ha each were established, and ground truth data 
were collected within the plots at 10-day intervals from June 25 
to October 20. Within each plot, 5 fixed observation sites with 

area of 1 m2 for each were monitored for rice growth stages, 
plant density, plant height and general information about field 
management. The aboveground biomass was measured 
separately for stems, green and dead leaves, and ears by 
collecting 25 samples randomly within each plot. LAI was also 
measured. During the rice harvest, detailed information on 
actual rice production was collected. Meanwhile, boundaries of 
the monitoring plots and other land surface objects were 
recorded using DGPS devices. Daily meteorological data were 
obtained from local meteorological bureau.  
 
During the rice season of 2006, four ASAR APMode products 
were acquired over the study area (Table 1). The calibration was 
carried out using the Basic ENVISAT SAR Toolbox software 
provided by European Space Agency (ESA) to extract 
backscattering coefficients. In order to reduce the speckle noise, 
two SAR image filters, the multichannel filter (Quegan & Yu, 
2001) and Gamma Map filter were performed successively to 
the previously calibrated images. Then, images were 
geo-referenced using a topographic map with a root means 
square error of the control points about 22 m. 
 
 

3. MODELS AND OPTIMIZATION METHOD 

3.1 ORYZA2000 

ORYZA2000 is a dynamic, eco-physiological rice crop model 
to simulate the growth, development and water balance of 
lowland rice in situations of potential production, water 
limitations and nitrogen limitations (Bouman et al., 2001). The 
model follows the daily calculation scheme for the rates of dry 
matter production of the plant organs and the rate of 
phenological development from emergence until harvest. By 
integrating these rates over time, dry matter production of rice is 
simulated throughout the growing season and final yield is 
calculated. 
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In this study, rice growth is assumed under the condition of 
potential production, and ORYZA2000 is calibrated by 
DRATES and PARAM to estimate the variety-specific 
parameters which consist of development rate, partitioning 
factors, relative leaf growth rate, specific leaf area, leaf death 
rate and fraction of stem reserves using the experimental data 
collected over the plots A and B. The experimental data of the 
plots C and D are kept for the validation. 
 
After the calibration, the predicted final yield and the modeled 
temporal course of dry aboveground biomass were compared 
with the experimental data by computing the simulation error, 
i.e. the mean absolute difference between the estimated and the 
observed data normalized by the measured value and expressed 
in percentage. As a result, the final yield was predicted with a 
simulation error less than 18%, and the total dry aboveground 
biomass was predicted with a simulation error of 17.4%. The 
correlation coefficient of simulated and measured LAI reaches 
96%. 
 
However, some parameters can be largely variable over the 
study area and are rarely available through field measurements. 
Since the rice is direct-seeded, the difference between plant 
densities from fields to fields reaches more than 22% on 
average and 69% to the maximum showing that the plant 
density varies remarkably over the study area. Therefore, a 
sensitivity analysis was carried out to determine whether or not 
there exists a relatively small subset of model inputs affecting, 
more than others, the temporal behavior of the state variable of 
interest for the assimilation. The inputs taken into account 
concerned emergence date (EMD), plant density (NPLDS) and 
maximum relative growth rate of leaves (RGRLMX), other 
parameters related to the nitrogen fertilization and water 
irrigation are not included for the potential production is 
adopted in this study. The result shows that the predicted rice 
yield and LAI are mainly sensitive to the changes of emergence 
date and plant density which constitute the set of model inputs 
which were involved in the assimilation and re-initialization 
process.  
 
3.2 Cloud 

The Cloud model (Attema & Ulaby, 1978) is a semi-empirical 
radar model to simulate the volume scattering for vegetation. It 
assumes the vegetation consists of a collection of water droplets, 
which are represented as small identical particles.  
 
The simple model has been applied successfully for a range of 
crop types and conditions (Champion et al., 2000; Inoue et al., 
2002). For paddy rice, we simply assume the scattering from the 
paddy background (water surface) is constant before the 
ripening stage and the temporal variation of rice backscatter is 
mainly attributed to the change of canopy size (e.g., stem height, 
leaf size), canopy water content and canopy biomass. 
 
The inputs W and h in the Cloud model (Attema & Ulaby, 1978) 
are rice parameters refer to the canopy water content and 
canopy size. In order to link the simple model with 

ORYZA2000 by the LAI, regression analysis is applied to 
investigate the relationship between W · h and LAI, in which the 
W · h represents the canopy water content per unit soil surface 
(kg/m2). As a result, a significant relationship is found as the 
following rational equation:  
 
 

LAI = (10.19 · W · h − 0.1534) / (W · h + 1.511)  (1) 
 
 
Finally, the Cloud model for the rice paddy can be expressed (in 
dB) as follows: 
 
 
σº = 10 · log10[α · cosθ · (1 − k2) + k2 · σºBG]    (2) 

 
 

k2 = exp{2 · β · (1.511 · LAI + 0.1534) / [(LAI − 10.19) · cosθ]} 
 (3) 

 
 
where σºBG = constant backscattering from canopy 
background (m2/m2) 
 
Here, three parameters α, β and σºBG should be estimated by 
fitting the model to the observed rice backscatter data. In this 
paper, the global optimization method SCE-UA was applied to 
estimate the optimal values of the three parameters, and tested 
for HH and VV polarization separately. The brief description of 
SCE-UA method and optimization configurations can be found 
in the next part. The results in terms of the α (in dB), β, and σºBG 
(in dB) with some statistics indicate that the Cloud model 
calibrated in HH polarization has a better performance to 
simulate the rice backscattering coefficients. 
 
3.3 SCE-UA Method 

SCE-UA (Shuffled Complex Evolution) method (Duan et al., 
1993), developed at the University of Arizona in 1992 is not 
problem specific and is easy to handle, which has been widely 
used in various fields for nonlinear optimization problems and 
reported exact results (Duan et al., 1994; Yan et al., 2006).  
 
The SCE-UA algorithm contains many parameters that control 
the probabilistic and deterministic components of the method. 
These parameters should be carefully selected for the optimal 
performance of the algorithm (Duan et al., 1993). Here, we only 
present the optimization configuration for the model input 
parameters of the rice backscatter model and ORYZA2000, 
with the system settings of the SCE-UA method for each of 
them (see Table 2 and 3). Least-squares function is used as the 
objective function. The optimization process is terminated if 
one of the following criteria is satisfied: (1) the algorithm is 
unable to improve 0.0001 percent of the value of the objective 
function over five iterations; (2) the algorithm is unable to 
change the parameter values and simultaneously improve the 
function value over five iterations; (3) the maximum number of 
iterations (10000) is exceeded. 

 
 

Rice backscatter model ORYZA2000 Configuration α (m2/m2) β (m2/kg) σºBG (m2/m2) EMD (DoY) NPLDS (plants/m2) 
Initial value 0.143 8.2 0.083 166 230 
Sample interval (0, 1) (0,10) (0, 1) [145, 175] [100, 300] 

 
Table 2. Optimization configuration for the model input parameters of the rice backscatter model and ORYZA2000 
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Models Number of 
Complexes

Number of points 
in each complex 

Number of points 
in a sub-complex 

Number of 
evolution steps

Minimum number 
of complexes Trials 

Cloud model 4 7 4 7 3 10 
ORYZA2000 3 5 3 5 2 10 

 
Table 3. System settings of SCE-UA method for the rice backscatter model and ORYZA2000 

 
 

4. RESULTS 

To achieve the presented scheme for estimating rice production 
and mapping rice yield, rice map should be produced at first as 
pointed out in Section 2. Fortunately, the rice map of the study 
area has been retrieved in our previous study using threshold 
classification method (Yang et al., 2008a) with the rice mapping 
accuracy of 84.36%. 
 
The semi-empirical rice backscatter model was calibrated and 
coupled with ORYZA2000 to simulate HH-polarized rice 
backscattering coefficients. During the process, the optimization 
stopped successfully in criteria (1), and recorded the optimal 
values of EMD and NPLDS for further analysis. Figure 2 shows 
the obtained distribution maps of EMD and NPLDS, and the 
map of rice yield, with the spatial resolution of 30 m. For each 
map, different colors are assigned to the pixels according to 
their values. The probability density plots of the retrieved maps 
were also displayed in Figure 3. It shows that the optimal 
parameters vary mainly in the following ranges: the EMD 
between DoY 160 and DoY 175, and the NPLDS between 150 
and 300 plant/m2. According to our field survey, the variation of 
the estimated rice emergence date and rice plant density is 
realistic for the study area, except that the average rice plant 
density is slightly underestimated. The rice yield in Figure 2(c) 
varies between 9000 and 11200 kg/ha. The mean estimated is 
about 10422 kg/ha, higher than the average observed about 
1200 kg/ha.  
 

The red color region in the EMD map shown in Figure 2(a) is 
conspicuous. The pixel value corresponding to the red area is 
between 171 and 175 with the average of 172.3. It indicates that 
the rice grown in this area have a late emergence date compared 
to the average rice emergence date observed (DoY 166). In 
addition, the red color region is well corresponding to the light 
blue area in the NPLDS map and the blue area in the yield map 
shown in Figure 2(b) and (c) respectively. The light blue area in 
the NPLDS map has the pixel value ranging from 100 to 150 
with the average of 118.9, which shows the rice plant density of 
the area is rather low. As a result, the blue area in the yield map 
has a relatively low rice production ranges from 9000 to 9800 
kg/ha. 
 
For a quantitative evaluation of the reliability of the produced 
rice yield map, it was compared to the in-situ data collected 
over the 10 monitored fields. As shown in Figure 4, it was 
found that the estimated rice yield is generally higher than the 
observed with a root mean square error of approximately 1133 
kg/ha (i.e. approximately 12.2%). The overestimation of the rice 
yield was due to the simulation under the condition of potential 
production used in this study. In fact, rice disease and pests are 
severe during the rice growth period of 2006, which causes the 
universal reduction of the rice yield. However, the tendency of 
rice growth status and final yield are well predicted according to 
the field survey during the rice harvest. 
 

         

(a) (b) (c)

                      
145                  175 (DoY)  100                    300 (plant/m2) 9000               11200 (kg/ha) 

 
Figure 2. Distribution maps of rice emergence date (a), rice plant density (b) and final rice production (c) 
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Figure 3. Probability density of pixel values for maps of rice emergence date (a), rice plant density (b) and final production (c) 
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Figure 4. Rice yield estimated after the assimilation of ASAR 
data (blue) compared to the yield measured over 10 fields (grey) 
 

5. DISCUSSION AND CONCLUSIONS 

In this study, a practical scheme for mapping rice yield based on 
ASAR data has been presented and was applied over Xinghua 
study area of China and validated with experimental data 
collected in 2006. The ORYZA2000 model predicts a rice yield 
map with a spatial resolution of 30 m. The estimated rice yield 
is generally higher than the observed with an accuracy of 
approximately 1133 kg/ha. This is due to the potential rice 
growth condition were assumed in this study. But the tendency 
of rice growth status and final yield are well predicted and the 
spatial variation of the rice yield is highly consistent with the 
actual rice production situation.  
 
In conclusion, the scheme described in this study is a promising 
technique to apply radar data for regional rice production 
estimation, when no accurate in-situ information is available 
and/or optical data are hampered by heavy clouds during the 
rice season. However, further validation of the presented 
scheme at different rice planting areas and with different radar 
configurations is needed. Therefore, future work will be 
dedicated to improve the models and assess the scheme over 
longer series of data and over different sites. 
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