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ABSTRACT: 
 
Availability of new generation of hyperspectral sensors such as the Hyperion has lead to new challenges in the area of crop type 
mapping and agricultural management. Many crops like wheat and barley are spectrally similar and may not be discriminated by the 
normally available multispectral data. Although the existing hyperspectral data provide the possibilities for discrimination of crop 
types, but consideration of spatial variability between the adjacent pixels known as the texture data, can lead to more accurate results 
in a classification process. In this research, Hyperion data of an agricultural area located in south of Tehran, has been examined for 
discrimination of wheat and barley fields. The output bands of linear unmixing algorithm have been used as inputs for texture feature 
generation by different methods including the First Order Statistics of the Gray Level Co-occurrence Matrix, Geostatistics and 
Fourier Transform. Maximum likelihood classifier has been applied to classify the different combinations of linear unmixing outputs 
and texture features. Overall accuracies as well as the producer accuracies have been used as the evaluation criteria for different 
classifications. Results of this work have shown that the use of texture features generated from the output bands of linear unmixing 
algorithm lead to higher accuracies. Overall accuracy improved up to 7% and better discrimination between similar classes where 
obtained. 
 

 
1. INTRODUCTION 

1.1 Overview 

The Hyperion sensor onboard NASA’s Earth Observing 1 (EO-
1) satellite is the first spaceborne hyperspectral instrument to 
acquire both visible/near-infrared (400-1000 nm) and shortwave 
infrared (900-2500 nm) spectral data (Pearlman, 2003). Because 
of having 242 potential bands and spatial resolution of 30 m, the 
sensor bears potentials to provide data for both detailed land use 
classification and estimation of biogeophysical and chemical 
properties of heterogeneously vegetated areas. 
 
In this study, usefulness of texture quantization methods for 
improving discrimination of crop types has been investigated.   
 
1.2 The study Site  

An agricultural area located in southern parts of Tehran, known 
as Ahmadabad has been selected as the study site. Wheat and 
barley are the main agricultural crops in the area. More than 30 
fields of detailed ground-truth dataset have been visited in the 
field and their records have been used as a reference data for 
training and verifying the results of the classification. 
 
1.3  Hyperspectral Data 

Hyperion data were acquired over the study area on May 21, 
2002 at 06:57:56 GMT. The EO-1 satellite is a sun-synchronous 
orbit at 705 km altitude. Hyperion data includes 256 pixels with 
a nominal size of 30 m on the ground over a 7.65 km swath. 
Well-calibrated data (Level 1B1) is normally available. 
Hyperion data is acquired in pushbroom mode with two 
spectrometers. One operates in the VNIR range (including 70 
bands between 356-1058 nm with an average FWHM of 

10.90 nm) and the other in the SWIR range (including 172 
bands between 852- 2577nm, with an average FWHM of 10.14 
nm). 44 of 242 bands including bands 1-7, 58-76 and 225-242 
are set to zero by TRW software during Level 1B1 processing 
(Pearlman, 2003). 
 
 

2. REMOTE SENSING DATA PREPARATION 

Post-level 1B1 data processing operations for Hyperion data 
included band selection (Datt, et al, 2003), correction for bad 
lines (Han, et al., 2002), striping pixels (Datt, et al, 2003) and 
smile (Goodenough, et al, 2003), a pixel-based atmospheric 
correction using FLAASH (Beck R et al., 2003) and a co-
alignment. A brief explanation of these is provided as follow.  
 
2.1 Band selection 

Atmospheric water vapor bands which absorb almost the entire 
incident and reflected solar radiation and the bands that have 
very severe vertical stripping are usually identified by visual 
inspection of the image data or atmospheric modeling (Beck R 
et al., 2003). The subset of 160 selected bands are listed in 
Table Ι. 

Array Bands Wavelength(nm)
VNIR 8 t0 57 427 to 926
SWIR 83 to 119 973 to 1336

130 to 164 1447 to 1790
181 to 184 1962 to 1992
187 to 220 2022 to 2355  

 
Table 1. List of the selected 160 bands used for this research 
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2.2 Bad line correction 

Bad lines in Hyperion level 1B1 data appear as dark vertical 
lines. These pixels have lower DN values as compared to their 
neighboring pixels. These pixels were corrected by replacing 
their DN values with the average DN values of their immediate 
left and right neighboring pixels (Han, et al., 2002). 
 
2.3 Correction of striping Pixels 

Vertical stripes are caused by differences in gain and offset of 
different detectors in pushbroom-based sensors. Statistics of the 
detector arrays can be studied by accumulating mean, variance, 
minimum, and maximum data for each pixel in each band over 
the lines of an image. As discussed above, Vertical stripe occurs 
where the statistics indicates, that the image information is valid 
(that is not considered as bad pixel) but with significantly 
modified gain and offset. It is assumed that such gains and 
offsets are relatively stable over a collect but not necessarily 
between collects (Beck et al., 2003). 
 
A general approach for removing vertical stripes with these 
characteristics is similar to methods used in the past to balance 
horizontal stripes in mirror scanner images by histogram 
equalization or to flatten images affected by limb brightening or 
to balance detectors in airborne pushbroom sensors (Beck et al., 
2003). That is, histogram moments, such as the means and 
variances of the columns in each band, are used to balance the 
statistics of the arrays to those of a reference histogram. 
 
The pixel balancing applied here is different in that it may be 
used either “globally” or “locally.” In global balancing, the 
statistical moments of each column are modified to match those 
for the whole image for each band. In the local approach, 
reference moments are estimated locally (Beck et al., 2003). In 
this research, global balancing method was used. 
 
2.4 Smile Correction 

Smile, which exists in all Hyperion datasets, refers to an across-
track wavelength shift from the center wavelength, which is due 
to the change of dispersion angle with field position. 
 
According to the Hyperion spectral calibration (Goodenough, et 
al., 2003), the shifts are dependent on pixel position in the 
across-track direction. For VNIR bands, the shifts range 
between 2.6–3.5nm. For SWIR bands, the shifts are less than 1 
nm and are not significant for agricultural applications 
(Goodenough, et al., 2003). Considering the high spectral 
resolution of the Hyperion data, the 2.6–3.6-nm shifts of VNIR 
bands cannot be ignored, in this case the pixel spectra may 
result in reduction of classification accuracies. Column Mean 
Adjustment in Radiance Space method was used for smile 
correction in this research (Goodenough, et al., 2003). 
 
2.5 Co-alignment 

A shift of one pixel in the line direction was corrected in the 
SWIR image data. This shift occurred between pixel positions 
128 and 129. A spatial misregistration between the VNIR and 
SWIR data was detected. A co-alignment between the two 
datasets is achieved by a counter-clockwise rotation followed by 
a negative one-pixel shift in the line direction. 
 
These operations were carried out on the VNIR data, which 
were then resampled with a piecewise linear interpolation based 
on the values of the nearest eight points. The VNIR were 
matched to the SWIR data. The co-alignment was carried out 

prior to atmospheric correction in order to use the 940-nm water 
vapour absorption in combination with the one located at 1130-
nm for scene-based retrieval of water vapour content on a pixel 
basis (Staenz, et al., 2002). 
 
2.6  Atmospheric Correction 

Atmospheric correction of the 160 channels of Hyperion dataset 
was performed by using FLAASH, an atmospheric correction 
program based on look-up tables generated with a radiative 
transfer code (MODTRAN-4) (FLAASH Module User’s 
Guide., 2005). 
 
 

3. ENDMEMBER  AND FEATURE EXTRACTION 

In conventional information extraction from hyperspectral 
images, endmembers as a reference data for classification 
process should be specified. They may be obtained from a 
spectral library, spectrometric measurement or be extracted 
from the image.  

Commonly used classification algorithms include unmixing 
methods (FAHIMNEJAD, et al., 2007). But an important 
limitation of unmixing for crop type classification is the 
problem of  threshold determination. Classification of unmixing 
results and texture data as implemented in this research, 
overcomes this limitation,  
 
3.1.Endmember extraction 

Theoretically the existing pure features in mixed pixels are 
refered to as endmembers. Selection and identification of 
spectral endmembers in an image is the key point to success of 
the linear spectral mixing model. Collection of endmembers 
should allow the description of all spectral variability for all 
pixels. 
 
Endmembers resulting from the use of the existing library of 
reflectance spectra are denoted as known endmembers. Whereas 
extraction of the purest pixels from the image data itself results 
in the derived endmembers. Because of the lack of access to 
spectral library or field measurements of spectral properties of 
land cover types of interest, endmember data of the known 
ground cover types were extracted from the Hyperion data. 
Three endmembers including soil, wheat and barley crops as 
extracted from the Hyperion data are represented in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Spectral profile of 3 endmembers extracted from the 

Hyperion Data 
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3.2.Linear Spectral Unmixing 

A simple and commonly used method of mixture analysis is the 
linear model. In this model, the spectrum is considered as a 
linear combination of the "pure" spectra of the materials located 
in the pixel area, weighted by their fractional abundance 
(Shresthad, et al., 2002). In linear mixture modeling the 
resulting pixel reflectance spectrum is assumed to be a 
summation of the individual material reflectance functions 
multiplied by their fraction. That means with known number of 
endmembers and by having the spectra of each pure component, 
the observed pixel value in any spectral band can be modeled by 
the linear combination of the spectral response of components 
within the pixel. The linear mixture model for a pixel, with the 
observed reflectance ir in band i can be described as: 
 
 

∑
=
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n

j
iijji afr

1

ε      (1) 

 
 
Where n is the number of endmembers 

jf : Fraction of endmember j 

ija : Spectral response of Endmember j in band i 

iε : Error term 
 
Using these techniques it is possible to derive the relative or 
absolute abundance of a number of spectrally pure components, 
together termed as endmembers, contributing to the observed 
reflectance of the pixel. Therefore, the fractions at each pixel 
(the unmixing result) can be computed by taking the inverse of 
equation 2. 
 
Additionally, one can impose constraints upon the solutions of 
equation 2. One set of constraints requires the fractions within a 
pixel to sum to unity. 
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A fully constrained set would also require that each individual 
fraction to lie between 0 and 1: 
 
 

10 ≤≤ if                        (3) 
 
 
For the purpose of crop type discrimination, results of the linear 
spectral unmixing were classified based on commonly used 
methods. Then linear unmixing output bands, were used as 
input bands for different texture quantization methods, and 
generated features together with the linear unmixing bands were 
used for classification.  

 
3.3.Texture Feature Generation 

The result of linear unmixing includes three bands, which are 
the proportions of existence of three main classes (wheat, barley 
and soil) in a pixel.  

Texture classification is a known method to classify high 
resolution images; also it can be used to generate extra features 
to use as input data for classification methods (Ashoori, et al., 
2006). 
 
There are different methods for quantifying texture, in this 
paper several methods were used to generate features from three 
available features. First order Statistical, Gray level Co-
Occurrence matrix based, Geostatistical, Fourier Transform and 
Wavelet based methods were used to generate new texture 
features.  
 
These are briefly described below : 
 
3.3.1 First Order Statistical Features： If (I) is the random 
variable representing the gray levels in the region of interest, the 
first order histogram P (I) is defined as (Theodoridis, 1999): 

 

pixelsofnumberTotal

Ilevelgraywhithpixelsofnumber
IP =)(          (4) 

 
 

Now different features can be generated by using the following 
equations: 

 
3.3.2. Moment 
 
 

                        (5) 
 
 

Where gN = number of gray levels. 
][1 IEm =  is the simple mean of pixels. Also 2nd, 3rd and 

other moments can be used. 
 

3.3.3.Central Moments 
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3.3.4.Absolute Moments 
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3.3.5.Entropy 
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3.3.6.Median:  Median is the middle value in a set of numbers 
arranged in increasing order. Because the kernel size always 
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covers odd number of pixels, median can be extracted simply by 
choosing the mid member of an array which contains gray 
levels of pixels that covered by the mask and then it is sorted.  

 
3.3.7.Mode: Mode is the most frequent value of a random 
variable. So in an image mode is the most frequent pixel gray 
level. 
 
3.3.8.Distance Weighted Mean:  If the distance from center 
pixel is considered as the weight for computing the mean then 
near pixels have more contribution in the results. 
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3.3.9.Gray level Co-Occurrence Based Features: Haralick 
et.al proposed this method to extract texture information from 
digital images. First Gray level co-occurrence matrix (GLCM) 
is produced and then several texture measures are computed 
from it. GLCM is a matrix that contains the number of each 
gray level pairs that are located at distance d and direction θ 
from each other. This matrix can be defined for different 
distances, angles and as well as for different lags.   
 
 

(10) 
 
In this research,  following features have been generarted from 
the GLCM matrix : 
 
3.3.10.Mean 
 
 

(11,12) 
 
 
where P(i,j)=GLCM(i,j) 

 
3.3.11.Variance 
 
 
 
 

(13) 
 (14) 

 
 

Mean and variance of GLCM are not the same as for the image 
because the frequency of occurrence of different pairs is 
modeled here. 
 
3.3.12.Homogeneity (Inverse Differences Moment) 
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It assigns higher weight to the main diagonal of GLCM so it 
produces higher values for images that have larger 
homogeneous areas. 

 
3.3.13.Contrast 
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The more the distance from the main diagonal of GLCM the 
higher the weight that is assigned to the P(i,j), so when the 
difference between neighboring pairs becomes large, the 
contrast increases. 

 
3.3.14.Dissimilarity 
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It works like contrast but gives lower weight to the difference of 
each gray level pairs. 
 
3.3.15.Entropy 
 
 

( )∑∑
− −

= =

−=
1 1

0 0
),(ln),(

g gN

i

N

j
jiPjiPEntropy                          (18) 

 
 

It outputs higher value for a homogeneous distribution of P(i,j), 
and lower otherwise. 

 
3.3.16.Angular Second Moment 
 
 
 

   (19) 
 
 
It is a measure of image smoothness. It outputs higher values 
when P(i,j) is concentrated in a few places in the GLCM and 
lower if the P(i,j) are close in value. 
 
3.3.17.Correlation 
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It measures linear dependency of gray levels on those of 
neighboring pixels. 

 
3.3.18.Geostatistical Features: Geostatistics is the statistical 
methods developed for and applied to geographical data. These 
statistical methods are required because geographical data do 
not usually conform to the requirements of standard statistical 
procedures, due to spatial autocorrelation and other problems 
associated with spatial data (http://www.geo.ed.ac.uk). 

Semivariogram that represents half of the expectation of the 
quadratic increments of pixel pair values at the specified 
distance can quantify both spatial and random correlation 
between the adjacent pixels. (Goodenough, et al, 2003) It is 
defined as: 
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That is the classical expression of variogram (h) here represents 
a vectorial lag between pixels. In this study direct variogram, 
madogram, cross variogram and pseudo-cross variogram have 
been used. The first two operate separately for each image 
bands and the second two operate for pairs of image bands. 
 
3.3.19.Direct Variogram : In this approach the following 
equation is used to estimate: 
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n(h) is the number of pairs that are in mask filter. 

 
3.3.20.Madogram:  This is similar to direct variogram except 
that squaring differences, are replaced by the absolute values of 
differences. 
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3.3.21.Cross Variogram:  Two image bands are used to 
quantify the joint spatial variability between bands. 
 
 

 
 
 

(24) 
 

 

3.3.22.Pseudo-cross Variogram:  It is similar to direct 
variogram, but uses pairs which are from two different bands 
(m,n). 
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3.3.22.Fourier Based Features: Fourier transformation, 
transforms a signal from space/time domain to frequency 
domain. The amplitude and phase coefficients are two outputs 
of a Fourier transformation. So different texture patterns could 
be identified by their Fourier coefficients but because in this 
research one value for each pixel is required, raw Fourier 
coefficients couldn’t be used. Several features can be generated 
using sum of the Fourier amplitude under different masks (Pratt, 
2001). These include ringing, sectorial, horizontal and vertical 
which are shown in figure 2. 
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Figure2. Different mask which can be used to generate features 
from Fourier coefficients 

 
P(i,j) is the (i,j)th pixel of approximation band of wavelet 
transformed image in specific level. 
 
First and second levels of wavelet transformation were used. 
 
Different parameters can be set in each method, the main 
parameter is window size. Different window sizes from 3 to 15 
were used to generate features in each method. 

 
 

4. CLASSIFICATION 

Linear unmixing outputs were used as input bands for texture 
generation. Then maximum likelihood supervised classification 
was used to classify different combinations of those three  linear 
unmixing output bands and textures features generated from 
different methods, with different window sizes and different 
distance vector in GLCM and Geostatistics and different masks 
in the fourier method. 
 
177 pixels were defined as training data and 3850 pixels were 
used as check data to evaluate the classification accuracy. These 
data were collected through filed work. 
 
Producer accuracy for each class, overall accuracy and kappa 
coefficient were calculated for each combination to evaluate 
each method.  

 
 

5. RESULTS AND CONCLUTION 

As compared to results obtained by thresholding of unmixing 
outputs which needs field work to specify the thresholds 
(Fahimneszhad, et al., 2007) higher overall accuracies has been 
obtained, by the use of texture data which is mainly based on 
the most commonly used maximum likelihood classifier. The 
improvement of accuracy is up to 7% in overall accuracy and up 
to 20% in producer accuracies. These results show that using 
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texture features has resulted in better discrimination of the 
similar classes. 
 
Some of interesting results of this research together with the 
resulting classification are shown in table 2 and figure 3. 
Classification of figure 3 has been identified as the most correct 
classification and has been obtained from classification of the 
three linear unmixing outputs and the corresponding pseudo-
cross variogram features.   
 
Accuracy of classifications resulting from different features 
show high differences with Geostatistics showing the best 
performance. Other methods in order of performance include 
First Order Statistic, Gray Level Co-Occurance Matrix and the 
fourier based features. 
 
As a general rule, features which are generated by using larger 
kernel sizes don’t lead to higher accuracies. Because, larger 
kernels act very similar to low pass filters and may ignore the 
local and high frequency details. 
 

 
Table 2.  Overall accuracy of the best 20 classification resulting 

from the integrated use of texture data 
 
 
 
 

 
 

Figure3. Classified image resulting from classification of 
unmixing and texture data (Red: Soil, Green: Barley, Blue: 

Wheat) 
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GLCM 6) 1,-1 5 95.66 87.34 100 92.3 0.87
GLCM (7) 1,-1 5 92.59 89.66 100 92.16 0.87

GLCM (3) 0,1 5 96.53 86.27 100 92.14 0.87
GLCM (10) 1,1 7 91.19 90.56 100 92.03 0.87
GLCM (7) 1,0 5 95.46 86.72 100 91.92 0.87
GLCM (3) 1,0 5 95.86 86.33 100 91.9 0.87
Geostatistics(4) 1,0 5 95.93 86.27 98.96 91.76 0.86
Geostatistics(All) All 3 94.99 87.29 97.1 91.63 0.86
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