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ABSTRACT: 
 
Although forest fragmentation and degradation have been recognized as one of major threats to wild panda population, little is 
known about the relationship between panda distribution and forest fragmentation. This study is unique as it presents a first attempt 
at understanding the effects of forest fragmentation on panda spatial distribution for the entire wild panda population. Using a 
moving window with a radius of 3 km, landscape metrics were calculated for two classes of forest (i.e. dense forest and sparse forest) 
which derived from a complete year of MODIS 250 m EVI multitemporal data in 2001. Eight fragmentation metrics that had highest 
loadings in factor analyses were selected to quantify the spatial heterogeneity of forests. It was found that the eight selected metrics 
were significantly different (P < 0.05) between panda presence and absence. The relationship between panda distribution and forest 
heterogeneity was explored using forward stepwise logistic regression. Giant pandas appear sensitive to patch size and isolation 
effects associated with forest fragmentation. The R2 value (0.45) of the final regression model indicates that landscape metrics partly 
explain the distribution of giant pandas, though a knowledge-based control for elevation and slope improved the explanation to 
74.9%. Findings of this study imply that the design of effective conservation area for wild panda must include large, contiguous and 
adjacent forest areas. 
 
 

                                                                 
* Corresponding author.   

1. INTRODUCTION 

The giant panda (Ailuropoda melanoleuca) is one of the world’s 
most endangered mammals. Fossil evidence suggests the giant 
panda were widely distributed in warm temperate or subtropical 
forests over much of eastern and southern China (Schaller, 
1994). Today this range is restricted to temperate montane 
forests across five separate mountain regions, where bamboo is 
the dominant understory forest plant (Schaller, 1994; Hu, 2001). 
According to the Third National Panda Survey (State Forestry 
Administration of China, 2006), the number of giant panda 
individuals increased in the last decades, but their distribution is 
discontinuous, with 24 isolated populations.  
 
Forest fragmentation and degradation have already been 
recognized as major threats that pose a great danger for panda 
population (Schaller, 1994; Hu, 1997; Hu, 2001). However, 
little is known about the distribution pattern of giant pandas at a 
national scale, as previous studies focused on the local 
relationships of panda occurrences and micro-environmental 
factors (Hu, 2001; Lindburg and Baragona, 2004). In other 
words, to date no quantitative and systematic studies have 
attempted to address the panda distribution with relation to 
fragmentation of forested landscapes (e.g. forest patch size, 
patch isolation and aggregation), especially over the entire 
range of wild giant pandas.  
 
A large number of landscape metrics have been proposed to 
quantify landscape patterns based on land cover as derived from 
remotely sensed data (Hulshoff, 1995; Gustafson, 1998). 
Because most landscape metrics are scale-dependent and 

landscape elements are species-specific (Cain et al., 1997; 
Saura, 2004), appropriate land cover classes and spatial 
resolution are critical to link response variables of species 
(Taylor et al., 1993; Hamazaki, 1996; Corsi et al., 2000) with 
landscape metrics (Turner et al., 1989; Frohn, 1998; Wu et al., 
2000). Time-series of 16-day composite MODIS 250 m 
Enhanced Vegetation Index (EVI) product, with a broad 
geographical coverage (swath width 2 330 km), intermediate 
spatial resolution and high temporal resolution, offers a new 
option for large area land cover classification (Bagan et al., 
2005; Liu and Kafatos, 2005). EVI is designed to minimize the 
effects of the atmosphere and soil background (Huete et al., 
2002), and was found to be responsive to canopy structure (Gao 
et al., 2000).  
 
The primary aim of this paper was to understand how the entire 
giant panda population relates to forest fragmentation. Specific 
research questions included: (1) Which landscape metrics 
characterize fragmentation of forests occupied by giant pandas? 
(2) What are the relationships between the distribution of giant 
pandas and forests fragmentation? (3) Do landscape metrics 
explain what proportion of the distribution of the giant panda? 
 
 

2. MATERIALS AND METHODS 

2.1 Study Area 

The study area (Figure 1) incorporates the 45 administrative 
counties in Shaanxi, Gansu, and Sichuan provinces of China 
which cover the entire giant panda distribution area, and 
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sampled during the Third National Panda Survey (State 
Forestry Administration of China, 2006). The total area is about 
160 000 km2, with the elevation ranging from 560 m to 6 500 m. 
The study area cross five mountain regions along the eastern 
edge of the Tibetan Plateau: Qinling, Minshan, Qionglai, 
Xiangling, and Liangshan. Qinling region is the northernmost 
area of the present-day distribution of the giant panda (Hu, 
2001), in which covered with deciduous broadleaf and 
subalpine coniferous forests (Ren, 1998). Minshan and Qionglai 
regions, with steep terrain, cool and humid climate, are the 
biggest distribution area of the giant panda (Hu, 2001), in which 
dense coniferous forests with an understory of bamboo thrive in 
the middle and upper elevations (China Vegetation Compiling 
Committee, 1980). Xiangling and Liangshan regions are 
southernmost panda distribution area, covered by evergreen 
broadleaf forests and coniferous forests (China Vegetation 
Compiling Committee, 1980).   
 
 

 
Figure 1. Map of the study area delineated in red polygon. The 
image presented is MODIS 250m EVI 16-day composite during 

Julian day 193-209 of 2001. 
 
2.2 Environmental and Species Data 

2.2.1 Remote Sensing Data Preparation: MODIS 250 m 
EVI time-series were downloaded and extracted by tile, 
mosaicked, reprojected from the Sinusoidal to the Albers Equal 
Area Conic projection using a nearest neighbour operator, and 
subset to the study area. To diminish the noise mainly caused 
by remnants of clouds, a clean, smooth time-series of EVI were 
reconstructed from raw EVI time-series by employing an 
adaptive Savitzky–Golay smoothing filter in TIMESAT 
package (Jönsson and Eklundh, 2004). The resulting smoothed 
time-series for 2001 (23 dimensions) were transformed into 
principal components (PCs) using a Principal Component 
Analysis (Byrne et al., 1980; Richards, 1984) to reduce data 
volume, and the first five PCs (accounting for 99.1% of 
variance in smoothed EVI time-series) were retained for further 
analysis.  
 
Ancillary data that were used in this study included the 
National Land Cover Map of China (NLCD-2000), a digital 
elevation model (DEM), and the Bio-Climatic Division Map of 
China. The NLCD-2000 Map, which developed from hundreds 
of TM and ETM images in 2000 (Liu et al., 2002), was 

geometrically reprojected to form a mosaic with a pixel size of 
250 m for reference data extraction. The DEM was clipped 
from the Shuttle Radar Topography Mission (SRTM) 90 m 
seamless digital topographic data and resampled to 250 m using 
a nearest neighbour operator. The Bio-Climatic Division Map 
of China (Liu et al., 2003) was rasterized with a pixel size of 
250 m to improve land-cover classification. All data were 
geometrically rectified and geo-referenced to ensure proper 
mutual registration and geographic positioning.  
 
2.2.2 Land-cover Characterization: Land-cover map for 
the study area was derived from retained five PCs in ENVI 4.3 
(ITT Industries, Inc). Because the giant panda has a strong 
preference for high forest canopy cover  (Hu et al., 1985; Hu, 
2001), we used five categories based on the NLCD-2000 land-
cover classification system (Liu et al., 2002) to represent the 
land-cover. Using a combination of unsupervised and 
supervised methods and integrated with the DEM and bio-
climatic division data, land covers were classified as dense 
forest (canopy cover > 30%), sparse forest (canopy cover < 
30%), grassland, cropland, and nonvegetated. The resulting land 
cover map with a grain size of 250 m and an overall accuracy of 
84% (kappa 0.8) was used for landscape metrics computation. 

 
2.2.3 Panda Presence-Absence Data: Because panda 
occurrence data were collected by an exhaustive survey 
throughout the study area (State Forestry Administration of 
China, 2006), any panda occurrence-free location can be 
potentially considered as a true absence. By buffering the 
occurrence points, it becomes possible to generate randomly 
distributed pseudo-absences and ameliorate the set towards true 
absences (Olivier and Wotherspoon, 2006). Initially 3 000 
random points were sampled within the forested areas with the 
minimum distance of 3 km between each other and minimum 
distance of 3 km to forest edges. Similar to the method of 
Olivier and Wotherspoon (2006), points were overlapped with a 
3-km buffer of panda occurrence points, 1 124 points that 
completely lay within the buffer zone were selected as panda 
presence samples, and 1 278 points that (1) located outside the 
buffer zone and (2) at a minimum distance of 3 km to the 
boundary of the buffer zone were selected as panda absence 
samples. In light of the giant panda biology (Hu, 2001), samples 
located in the areas above 3 500 m or with a slope greater than 
50º were discarded. The Moran’s I statistic (Moran’s I = 0.03, Z 
= 1.91, P > 0.05) indicated that the spatial autocorrelation was 
insignificant in the samples (Upton and Fingleton, 1985). 
 
2.3 Selection of Landscape Metrics for Quantifying Forest 
Fragmentation 

Initially 26 landscape metrics (Table 1) were computed from 
the land cover map with a constant spatial extent for the two 
forest classes in FRAGSTATS 3.3 (McGarigal and Marks, 
1995). A moving window radius for computation was set to 3 
km, so as to have a landscape extent equivalent to the territory 
of an adult giant panda (Hu, 2001; Pan, 2001). After 
computation, values of metrics were extracted to panda 
presence-absence points by an extraction tool in Spatial Analyst 
Tools of AcrGIS 9.2 (ESRI Inc. 2007). 
 
To obtain a set of redundancy-free metrics for quantifying the 
spatial configurations of forest, firstly a partial correlation 
analysis with controlling for the effect of elevation was 
employed to eliminate highly correlated metrics. Of the pairs of 
metrics with correlation coefficients ≥ |0.9|, only one metric was 
retained based on the criteria: (1) metrics that commonly used 
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in literatures; (2) density metrics and distribution statistics 
metrics were preferred to absolute metrics (Riitters et al., 1995; 
Griffith et al., 2000). With the remaining metrics, a factor 
analysis (Riitters et al., 1995; Cain et al., 1997) was performed, 
and non-correlated factors were extracted using a principal 
components method with orthogonal rotations and retained by 
the Kaiser rule that factor’s eigenvalue > 1 (Bulmer, 1967). The 
metrics with highest absolute loading on each of retained 
factors were selected as landscape variables. By this process, 
the multicollinearity in metrics was no longer problematic 
(Variance-Inflation Factors < 5 and tolerance > 0.2 (Sokal and 
Rohlf, 1994)). 
 
 

Acronym Metric name 
LPI Largest Patch Index 
LSI Landscape Shape Index 
PD Patch Density 
PLAND Percentage of Landscape 
ED Edge Density 
AREA Mean Patch Area 
GYRATE Radius of Gyration Distribution 
CONTIG Contiguity Index 
FRAC Fractal Dimension Index 
PARA Perimeter Area Ratio 
SHAPE Shape Index 
CPLAND Core Percentage of Landscape 
DCAD Disjunct Core Area Density 
DCORE Disjunct Core Area Distribution 
CAI Core Area Index 
CORE Core Area 
COHESION Patch Cohesion Index 
CONNECT Connectance Index 
ENN Euclidian Nearest Neighbour Index 
PROX Proximity Index 
AI Aggregation Index 
CLUMPY Clumpy Index 
DIVISION Landscape Division Index 
IJI Interspersion Juxtaposition Index 
PLADJ Percentage of Like Adjacencies 
SPLIT Splitting Index 

 
Table 1. Landscape metrics used in this study. All metrics were 

computed for dense forest and sparse forest. Detailed 
descriptions refer to McGarigal and Marks (1995). 

 
2.4 Characterizing the Panda Distribution with Metrics 

2.4.1 Significance Testing: Representative metrics were 
compared between forest areas with panda presences and 
absences. Because some metrics did not meet the assumption of 
homogeneity of variances and some were non-normally 
distributed, a Brown-Forsythe's F test (Rutherford, 2001) and 
nonparametric Mann-Whitney U test were employed to test 
whether metrics are significantly different between panda 
presences and absences. Metrics with significant difference 
were used for further model building. All tests were conducted 
in SPSS 15.0 (SPSS Inc. 2006).  
 
2.4.2 Logistic Regression Analysis: The binomial logistic 
regression, a common statistical method used to estimate 
occurrence probabilities in relation to environmental predictors 
(Cowley et al., 2000), was employed for delineating the relation 
between panda presence-absence and representative metrics. 
Stepwise model-fitting with forward selection was used to help 

construct a model with good fit to the data, in which the 
variable with the most significant change in deviance at each 
stage was incorporated into the model until no other variables 
were significant at the P < 0.05. The best model was selected 
based on Nagelkerke R2 and Hosmer-Lemeshow goodness of fit 
test (Hosmer and Lemeshow, 2000; Davis, 2002). The panda 
presence-absence samples were randomly split into two parts, 
one for model building (n = 2 000), another for model 
evaluation (n = 402). All statistical analyses were conducted in 
SPSS 15.0 (SPSS Inc. 2006). 
 
2.4.3 Spatial Implementation of Model: Because the 
logistic regression model was built only on landscape metrics, 
whereas the distribution of the giant panda was limited by a 
range of environmental conditions such as terrain features, the 
model may overestimate panda distribution regardless of 
environmental tolerances and preferences of the giant panda. 
Hence, a knowledge-based control was applied by integrating 
the logistic regression model with elevation and slope to 
mitigate the risk of over-prediction, described as below:  
 
 

CCPP slopeeleii ××='                                  (1) 
 
 
where    Pi′ = refined probability 
             Pi = probability estimated by logistic regression model 
             Cele = conditional probability related to elevation 
             Cslope = conditional probability related to slope 
 
The knowledge-based rules for control were formulated based 
on the integration of knowledge from several sources: (1) 
literatures (Hu, 2001; Pan, 2001); (2) detailed discussion with 
several specialists; (3) knowledge acquired from field 
observations. Spatial implementations of the logistic regression 
model and knowledge-based control were achieved in ERDAS 
IMAGINE 9.1 (LLC, 2006). 
 
2.4.4 Model Evaluation: The performance of final logistic 
regression model was assessed by overall accuracy, sensitivity 
and specificity, kappa coefficient and Z-test using an 
independent panda presence-absence data (n = 402). Sensitivity 
is defined as the proportion of correctly predicted presence to 
the total number of presence in testing samples; and specificity 
is the proportion of correctly predicted absence to the total 
number of absence in testing samples (Fielding and Bell, 1997). 
The kappa coefficient and its variance (Cohen, 1960; Congalton, 
1991; Skidmore et al., 1996) were computed and the effect of 
the knowledge-based control was examined through a Z-statistic 
using kappa coefficients (Cohen, 1960; Congalton, 1991). A 
threshold of 0.5 was arbitrarily selected to convert the 
continuous probability surface to a discrete panda presence-
absence map. A probability greater than or equal to 0.5 was 
coded as presence, and less than 0.5 was absence. However, this 
value may not be optimal in all cases (Manel et al., 1999). 
Hence, a sensitivity analysis was conducted to consider 
thresholds from 0.3 to 0.7. 
 
 

3. RESULTS 

3.1 Representative Metrics for Forest Fragmentation 
Quantification 

From the factor analyses, eight metrics were selected as 
representative metrics for quantifying forest fragmentation, four 
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metrics measure dense forest and four metrics measure sparse 
forest (Table 2). In general, these eight metrics measure three 
aspects of the forests: patch area/edge, patch connectivity, and 
patch aggregation. 
Statistical tests show that all eight representative metrics were 
significantly different (P < 0.05) between panda presences and 

absences (Table 2), indicating these metrics are important 
factors for the distribution of giant pandas. Patches of forest 
occupied by giant pandas tended to be larger, closer together 
and more contiguous. All metrics were used for logistic 
regression model building. 

 
 

Presence (n=1124) Absence (n=1278) 
Metrics 

Mean ± S.D. Mean ± S.D. 
Brown-Forsythe's 

 F test 
Mann-Whitney

 U test
ED of dense forest 22.6 ± 5.6 16.8 ± 7.2 507.0 (P < 0.01) -20.2 (P < 0.01)
LPI of dense forest 53.4 ± 21.8 33.7 ± 25.4 416.3 (P < 0.01) -19.1 (P < 0.01)
PROX of dense forest 16.1 ± 10.9 9.9 ± 9.4 218.0 (P < 0.01) -12.8 (P < 0.01)
CLUMPY of dense forest 0.4 ± 0.1 0.4 ± 0.3 62.1 (P < 0.01) -14.5 (P < 0.01)
AREA of sparse forest  75.9 ± 124.1 184.3 ± 280.3 156.3 (P < 0.01) -14.4 (P < 0.01)
LSI of sparse forest 4.0 ± 0.8 3.7 ± 0.8 97.9 (P < 0.01) -10.3 (P < 0.01)
PROX of sparse forest 6.1 ± 6.3 9.46 ± 8.6 121.5 (P < 0.01) -8.8 (P < 0.05)
CLUMPY of sparse forest 0.4 ± 0.2 0.4 ± 0.2 89.3 (P < 0.01) -13.1 (P < 0.01)

 
Table 2. Summary statistics and results of Brown-Forsythe's F test and Mann-Whitney U test for eight representative metrics 

between panda presence and absence. 
 
 
3.2 The Logistic Regression Model 

Of eight representative metrics, four metrics were significant at 
P < 0.01 (Table 3) and the rest were not included into the final 
model (at P < 0.05), indicating that patch size, edge density, 
and clumpiness of dense forest play significant roles in defining 
panda distribution.  
 
 
Parameter Coefficient S.E. P 
ED of dense forest  0.160 0.010  < 0.001
LPI of dense forest  0.042 0.003  < 0.001
CLUMPY of dense forest -1.475 0.335  < 0.001
AREA of sparse forest  0.001 0.000      < 0.01
Constant -4.736 0.363  < 0.001
 

Table 3. Parameter estimates of the final logistic regression 
model. 

3.3 Model Performance 

The logistic regression model explains around 45% of the 
overall variance of the metrics in training dataset (R2 = 0.45). 
However, the Hosmer-Lemeshow statistic was 15.864 (df = 8, P 
= 0.04), pointing out that the model might not fit the data 
adequately. By applying the knowledge-based control to the 
model, the overall accuracy and specificity increased around 
5% and 13% respectively (Table 4), and predicted panda 
presence shrank mainly in Qionglai, Xiangling, and Liangshan 
(Figure 2). The Z-test for kappa coefficients shows that the 
accuracy of the mapping was significantly improved by 
applying the knowledge-based control (P < 0.05). The 
sensitivity analysis indicated that the threshold of 0.5 is 
appropriate for transforming continuous probabilities of panda 
occurrence to discrete panda presence-absence, where the 
sensitivity-specificity difference (Liu et al., 2005) reaches the 
minimum.  

 
Figure 2. Presence-absence of the giant panda predicted by the logistic regression model (threshold = 0.5): (a) without knowledge-

based control; (b) with knowledge-based control for elevation and slope. 
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Modelling  

Without control With control 
Overall accuracy 69.9% 74.9% 
Sensitivity 79.5% 77.6% 
Specificity 58.5% 71.6% 
Kappa 0.39 0.49 
Kappa variance 0.00048 0.00044 
Z 3.42 (P < 0.05) 

 
Table 4. Statistics for evaluation of model performance. 

 
 

4. DISCUSSION 

4.1 Distribution of giant pandas in relation to forest 
fragmentation 

From an ecological point of view, every species has its 
particular position in the ecosystem, which is termed ‘niche’ 
(Elton, 2001).  The giant panda is a forest inhabitant with 
exclusive territory, thus the spatial pattern and forest patch 
plays an important role in the distribution of the giant panda. In 
this study, both the Brown-Forsythe's F test and nonparametric 
Mann-Whitney U test showed that eight representative metrics 
were significantly different between panda presence and 
absence, indicating the heterogeneity of forest has a significant 
contribution to the distribution of giant pandas. Of the four 
metrics included in the logistic regression model, three metrics 
measure patch area/edge, pointing out that the giant panda 
appear sensitive to patch size and isolation effects associated 
with forest fragmentation. The giant panda tends to occur in 
larger, more contiguous (or less fragmented), but less 
aggregated dense forest patches. A larger dense forest patch or 
contiguous patches can potentially provide good conditions of 
food and shelter because of the high patch connectivity. The 
preference of less aggregated forest patches may relate to panda 
migration or dispersal, because high aggregated patches will 
increase the cost of migration or dispersal, e.g. high risk of 
being preyed, lack of shelter. 
 
4.2 Model performance and its factors 

As demonstrated in this study, logistic regression model with 
knowledge-based control for the effect of elevation and slope is 
capable of predicting the spatial distribution of the giant panda 
using landscape metrics. Logistic regression itself is a 
transformed linear regression which merely depends on 
explanatory variables included in the model, whereas the 
distribution of the giant panda is also limited by other physical 
conditions of environment. The absence of those factors may 
result in the bias in modelling. This problem can be diminished 
by applying an appropriate knowledge-based control, However, 
to design an ecologically meaningful control needs adequate 
relevant knowledge and well-understanding of the relationship 
between the species and the environmental factors.  
 
A fundamental assumption of this study is that bamboo is 
sufficient and thus not a constraint of panda distribution. In fact, 
bamboo resources are unevenly distributed across five mountain 
regions (State Forestry Administration of China, 2006). To 
accurately map the distribution of giant pandas or design 
corridors, spatial pattern and quality information of bamboo 
forests is required. In addition to bamboo information, other 
environmental factors, such as forest compositions and road 

network, are also necessary since they have direct or indirect 
influences on giant pandas.  
 
The random panda presence-absence data may also affect the 
accuracy of prediction, mainly because the data were inferred 
based on panda occurrences records instead of ground truth. 
Exhaustive searches should be conducted in limited areas in 
order to provide accurate data on absences as they refine the 
model, as suggested by Brotons et al. (2004). In addition, the 
heterogeneity in forests across the panda distribution area can 
also increase within-group variance in the training samples, and 
consequently decrease the power of the model. This may be 
mitigated by dividing the study area into several homogeneous 
forested landscapes. 
 
Furthermore, landscape metrics may be sensitive to the level of 
detail in categorical map data that is determined by the schemes 
used for map classification (Turner et al., 2001). In this study, 
forests were categorized into dense forest (canopy cover > 30%) 
and sparse forest (canopy cover < 30%). The division is 
practical as it was used in UNEP-WCMC's forest classification 
(http://www.unep-wcmc.org/forest/fp_background.htm). It is 
also ecologically meaningful because giant pandas have been 
proven that have a strong preference for forest patches with a 
high canopy cover (Hu, 2001). The test for the sensitivity of 
landscape metrics towards different division of forests may help 
the understanding of the relationship between forest spatial 
patterns and the response of the giant panda; but this is beyond 
the objective of this study. 
 
 

5. CONCLUSION 

This study demonstrated a successful approach for modelling 
the spatial distribution of giant pandas from multitemporal 
MODIS 250 m EVI data and landscape metrics. Eight metrics 
were selected to quantify forest fragmentation. All metrics were 
significantly different between the forest patches with panda 
presences and absences. Forest patch size, edge density, and 
patch aggregation were found play more significant roles in 
panda distribution. Selected landscape metrics partly explained 
the distribution of giant pandas, though a knowledge-based 
control for elevation and slope improved the explanation 
significantly. Findings of this study have profound implications 
for wild giant panda conservation. 
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