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ABSTRACT:  
 
Estimation of forest carbon storage is a critical challenge for understanding the global carbon cycle because it dominates the 
dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for estimating 
accurately forest canopy height, which has a direct relationship and can provide better understood to the aboveground carbon storage. 
To test the capacity of the large-footprint LiDAR for estimating canopy height in the montane cool temperate forest, the full 
waveform data of the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) was 
used to extract forest canopy height in Wangqing of China. In this study, the maximum forest canopy height was regressed as a 
function of waveform extent and the elevation change in terms of terrain slope ranges. Final regression model for slope range of 0 to 
<5° explained 81% variance of maximum canopy height. With the increasing of slope ranges, the model accuracies significantly 
declined. The regression model could explain 61% and 47% of variance at the plots of which the terrain slope within 0 to <10° and 0 
to <15° respectively. When the terrain slope is beyond 16°, the regression models became not so reliable anymore with less than 
36% agreement. The results showed that the GLAS waveform data provides reasonable prediction for the maximum canopy height in 
the cool temperate forest of Northeast China. 
 
 

1. INTRODUCTION  

Forests play an important role in global carbon cycling for they 
are large pools of carbon as well as potential carbon sinks and 
sources to the atmosphere, and the accurate estimation of forest 
biomass is necessary for inventorying greenhouse gas and 
accounting terrestrial carbon (Muukkonen and Heiskanen, 
2007). 
 
The accurate estimation of forest biomass depends on a series 
of factors, in which the forest type and canopy height show 
more important roles. Passive optical remote sensing and active 
radar techniques have been widely applied in classifying forest 
type (e.g. Hagner and Reese, 2007; Lela and Said, 1993; 
Saatchi and Rignot, 1997). They, however, hold limitations in 
predicting the forest canopy height, which hampers the accurate 
estimation of forest biomass.  
 
As a relatively new active remote sensing technique, the Light 
Detection And Ranging (LiDAR) system has a unique 
capability for estimating accurately forest canopy height (Hyde 
et al., 2005; Streutker and Glenn, 2006). LiDAR systems are 
typically classified into two types, depending upon the size of 
the “footprint” for the laser pulse. Large-footprint LiDAR 
systems digitize the full returned energy waveforms that cover 
relatively large areas (typically greater than 5 m in diameter), 
while small-footprint LiDAR systems typically record the range 
of one or more discrete reflections from laser pulses over small 
areas (typically less than 1–2 m in diameter)(Wehr and Lohr, 
1999).Large-footprint LiDAR systems are better for getting 
canopy height compared to small-footprint LiDAR systems  
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for their laser energy consistently reaches the ground even in 
dense forests due to their larger footprint sizes and do not miss 
tree tops (Dubayah and Drake, 2000).  
 
For the large-footprint LiDAR systems, the measure of 
maximum canopy height is obtained from the travel time 
between canopy top (first return) and ground (last return) 
reflections (Harding et al., 2001; Hudak et al., 2002). The 
waveform data from large-footprint LiDAR instruments have 
been successfully used to estimate forest canopy heights, for 
example Hyde et al. (2005; 2006) used Laser Vegetation 
Imaging Sensor (LVIS) to predict the forest canopy height in 
the Sierra Nevada mountains of California, and found that the 
metrics derived from LVIS waveform data could explained 
around 60-85% of the variation of maximum or mean canopy 
height; Anderson et al. (2006) employed LVIS to measure 
maximum canopy height in the Bartlett Experimental Forest 
(BEF) in central New Hampshire (USA), and the results showed 
that the LVIS metrics explained up to 80% of the variation in 
maximum canopy height; and Sun et al. (2007) applied the 
waveform data from the Geoscience Laser Altimeter System 
(GLAS) instrument aboard the Ice, Cloud, and land Elevation 
(ICESat) satellite to estimate the forest canopy height in the 
forests around Tahe and Changbai Mountain areas in Northern 
China, and found the maximum tree height measured in the 
field was well correlated to that predicted from GLAS indices 
(R2 = 0.75). 
 
Currently, most of these studies, however, focus on the forests 
on relatively flat terrains (Lefsky et al., 2005b; Lefsky et al., 
2005c) . For the regions in which the footprint topographic 
relief is larger compared to canopy height, the interpretation of 
waveforms is complex because the acting attributes to the 
waveform shape are not as obviously differentiated as those 
from flat terrains (Harding and Carabajal, 2005) . In these cases, 
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the canopy and ground reflections are mixed together, which 
makes the interpretation of waveforms more difficult (Harding 
and Carabajal, 2005). Lefsky et al. (2005a) combined ICESat-
GLAS waveforms and ancillary topography to estimate 
maximum forest canopy height in three ecosystems over sloped 
terrains: tropical broadleaved forests in Brazil, temperate 
broadleaved forests in Tennessee, and temperate needle-leaved 
forests in Oregon. Final models for each site explained between 
59% and 69% of the variation of the field-measured forest 
canopy height. For better understanding the effects of slopped 
terrain on LiDAR-based forest canopy height estimation, it is 
needed to define the terrain slope threshold for the performance 
of the regression model.  
 
With ICESat-GLAS waveforms, this study aimed to examine 
the effects of different slope terrain on large-footprint LiDAR-
based forest canopy height estimation, and to explore the 
potential of LiDAR in estimating forest canopy height in 
montane areas. Wangqing forest area, a cool temperate forest in 
Jilin Province, China, was selected as a case study, for the 
topography and forest type variations with this area make it an 
ideal candidate to achieve the aims of this study.  
 
 

2. MATERIALS AND METHODS  

2.1 Study area 

 

 
 

Figure 1. Location of study area 
 
Wangqing forest area is located along the border between China 
and North Korea (43°05′~43°40′N, 129°56′~131°04′E), and its 
area is approximately 85 ×60 km (Figure 1). It belongs to 
Changbai mountain system, which is one of the most valuable 
reserves in China due to its rich gene pool of many plant 
species with the altitudinal vegetation zone in the Mountain. 
This region is dominated by a cool temperate continental 

climate influenced by monsoon, and has four clearly different 
seasons: windy spring, hot and rainy summer, cool autumn and 
cold winter. The mean annual temperature is 3.9 ℃, and the 
mean annual precipitation is 438 mm, about 80% of which falls 
between May and September. Elevation ranges from 360 to 
1,477 m, and the terrain slopes range from 0 to 45° generally. 
The mixed conifer/broadleaved forest is the zonal vegetation 
between 500 and 1,100 m altitude. The dominant species are 
Korean pine (Pinus koraiensis Sieb. et Zucc.), Dahurian larch 
(Larix gmelinii Rupr.), Amur linden (Tilia amurensis Rupr.), 
Mongolian oak (Quercus mongolica Fisch.), Manchurian ash 
(Fraxinus mandshurica Rupr.) and Maple (Acer mono Maxim.). 
The mean forest canopy height is around 26 m and the soil type 
of this area is dark brown soil.  
 
2.2  ICESat data 

The full waveform data of the ICESat-GLAS were used to 
extract forest canopy height. GLAS is the first polar-orbiting 
LiDAR instrument for continuous global observations of the 
Earth. The laser footprint diameter on the Earth’s surface is 
nominally 70 m, the space between footprints is about 175 
meters, and the width of the transmitted pulse is 4 ns 
(nanosecond), equivalent to 60 cm in surface elevation. ICESat 
offers in total 15 products called GLA01 to GLA15. The 
waveforms were derived from GLA01 Global Altimetry Data 
Product, and geolocated footprint locations were obtained from 
GLA14 Elevation Data Product. The full waveform datasets 
with cloud-free profiles in the period from 2003-02-21 to 2006-
10-27 over the study area were downloaded from the National 
Snow and Ice Data Center (NSIDC) 
(http://nsidc.org/data/icesat/, accessed on October 30 2007) for 
achieving the aim of this study. 
 
2.3 Digital elevation model (DEM)  

The fine resolution (20×20 m) DEM was obtained to (1) verify 
the geolocation accuracy of GLAS footprints; (2) calculate a 
terrain slope map that was used to stratify the study sites for 
footprint sampling plot locations; and (3) determine terrain 
index, which was defined as the range of ground surface 
elevations within one of three sampling windows (3×3, 5×5, 
and 7×7 DEM pixels) applied to a DEM at the GLAS footprint 
location (Lefsky et al., 2005a). 
 
2.4 Field sampling 

Although the forests in the study area, as a whole, are 
heterogeneous due to varied terrain conditions and the forest 
types, they are relatively homogeneous inside each forest 
management unit, which is a well defined and demarcated land 
area, predominantly covered by forests, managed on a long-
term basis and having a set of clear objectives specified in a 
forest management plan (FAO, 2003). In this study, the plots in 
which the number of broadleaved/needleaved trees exceeds 
70% were defined as broadleaved/needleaved forests, and plots 
with broadleaved or needleaved trees in number between 15% 
and 70% were then defined as mixed forest. It was found there 
were very few footprints located in the areas with terrain slope 
more than 30°, thus we classified the terrain slope into 4 
categories: 0 to <5°, 5 to <15°, 15 to <25°, 25 to <30°. Plots 
were randomly selected within each slope category considering 
different forest types, and totally 166 sites within ICESat 
footprints were designed for sampling (see Figure 2). 
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The fieldwork was carried out in September-October 2007. A 
global position system (GPS) was used to localize each 
sampling site coinciding with the footprint centre. In each plot, 
a circular region with area of 500 m2 in horizontal, which is a 
common plot size in forest investigation, was determined. The 
vegetation cover and ground cover charactered by tree species, 
percentages of broadleaved and needleaved tree and maximum 
tree height, were measured and recorded. 
 

 
 

Figure 2. Field plots distribution 
 

2.5 GLAS waveform processing  

The binary data of GLA01 and GLA14 were firstly converted 
into ASCII format by the IDL program developed by the 
National Snow and Ice Data Center (NSIDC, 2006). Then, the 
waveform data, originally in counts from 0 to 255, were 
converted into voltage units, and the voltage waveform was 
normalized by dividing them by the total received energy to 
enable waveforms comparable, that means the area under any 
normalized waveform equals one. Next, the normalized 
waveforms were smoothed by a Gaussian filter. Finally, 
Gaussian components were fitted to the smoothed waveform. A 
detailed description of these processing steps was discussed by 
Duong et al. (2006).  
 
2.6 Waveform extent extracting 

LiDAR waveform extent was derived for predicting canopy 
height. Waveform extent is defined as the vertical distance 
between the first and last elevations at which the waveform 
energy exceeds a threshold level. The threshold was determined 
by fitting a Gaussian distribution to the peak of lowest energy 
in a histogram of waveform energy, which identifies the mode 
and standard deviation of background noise in each waveform. 
The threshold was set to the noise mode plus 4 times the 
standard deviation (Brenner et al., 2003).  
 
2.7 Canopy height estimating  

Considering different terrain slope ranges, the canopy height 
estimation method developed by Lefsky et al. (2005) was 
selected to predict the maximum forest canopy height, which 
relates field measured maximum canopy height to ICESat 
waveforms and DEM data: 
 

H= b0 (w – b1g) 
 

Where H is the measured maximum canopy height, w is the 
waveform extent, g is the terrain index (ground extent) in 
meters, b1 is the coefficient applied to the terrain index, and b0 
is the coefficient applied to the waveform height index (Lefsky 
et al., 2005a). In this study, we used the 20 m DEM data to 
extract the terrain index. The correlation between index and the 
difference between the GLAS waveform extent and the field 
observed maximum canopy height was investigated. The 
investigation showed that the terrain index derived from a 
square 3×3 matrix was a best choice to estimate the canopy 
height difference. Thus, regression was used to estimate 
maximum canopy height as a function of GLAS waveform 
extent and the 3×3 terrain index in the study. For the equation 
coefficients, b0 and  b1, the examination was done to specify 
them for our study area. In terms of terrain slope ranges, all 166 
plots were randomly divided into 2 groups for model calibration 
and validation.  
 
 

3.  RESULTS 

For all GLAS footprints acquired from 2003 to 2006, the 
correlation of elevation derived from DEM and GLAS was 0.99 
with RMSE equal to 0.016 m. According to the description of 
Carabajal and Harding (2005) and Sun et al. (2008), this result 
indicated that the error of GLAS geolocation is small.  
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Figure 3. LiDAR waveform on track 121745072 with shot 

number 1: raw waveform-red, with the Gaussian component-
green and fitted waveform-dashed black 

 
Figure 3 shows the results of the fitting algorithm of LiDAR 
waveform. The leftmost Gaussian component referred to as the 
first mode corresponds to the first reflecting feature in the laser 
footprint, and it, over the forest areas, mostly originate from the 
reflection by the tree canopy. The rightmost Gaussian 
component corresponds to the energy reflected by the surface 
hit last, which corresponds to the last ground return below the 
tree in forest applications. 
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Figure 4. Correlation between waveform extent and observed 

maximum canopy height (MCH) 
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For all 166 forest plots, Figure 4 shows that there is almost no 
linear relationship between waveform extent and the observed 
maximum canopy height. To test the performance of model 
developed by Lefsky et al. (2005a), 140 plots were selected 
randomly for calibration, and the result shows that model was 
invalid with R2 close to zero. In this study, the model was 
defined invalid when the residual sum of squares was higher 
than the corrected total sum of squares. 
 

0 to <5° slope

R2 = 0.79

0

5

10

15

20

25

0 5 10 15 20 25

O
bs

er
ve

d 
M

C
H

 (m
)

 
0 to <10° slope
R2 = 0.60

0

5

10

15

20

25

30

35

0 5 10 15 20 25

O
bs

er
ve

d 
M

C
H

 (m
)

 
0 to <15° slope
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Figure 5. The correlation between the observed and predicted 
maximum canopy height (MCH) considering different terrain 

slope ranges 
 

To evaluate the model performance according to terrain slope 
range, the data were then grouped into the cumulative slope 
categories. For each slope category, the model calibration and 
validation were done to determine how the model works in 
terms of the terrain slope. Table 1 shows the valid model fitting 
results of slope categories with p-level less than 0.05, and 
Figure 5 displays the model validation curve for each slope 
category. For the slope category of 0 to <5°, the regression 
model could explain 81% (RMSE=4.36 m) variance of 
maximum canopy height. With the increasing of slope ranges, 
the model accuracies significantly declined. The regression 
model could explain 61% (RMSE=4.20 m) and 47% 
(RMSE=4.31 m) of variance at the plots of which the terrain 
slope within 0 to <10° and 0 to <15° respectively. When the 
terrain slope is beyond 16°, the regression models became not 
so reliable anymore with less than 36% (RMSE=4.62 m) 
agreement. And, for the slope category of 0 to <25°, the model 
can only explain 7% of variance of the maximum canopy height. 
The independent model validation also showed the same trend. 
The model validation accuracy was 79% and 60% respectively 
for the slope range of 0 to <5° and 0 to <10°, and less than 50% 
when the terrain slope was beyond 15°. 

 
 

Slope 
category N b0±SE b1±SE R2 RMSE, 

m 

0-<5° 12 0.707 
±0.104 

-0.716 
±0.856 0.81 4.36 

0-<10° 49 0.609 
±0.057 

-1.204 
± 0.531 0.61 4.20 

0-<15° 76 0.597 
±0.048 

-1.021 
±0.446 0.47 4.31 

0-<16° 80 0.585 
±0.050 

-1.035 
±0.4711 0.36 4.62 

0-<20° 90 0.601 
±0.048 

-0.827 
±0.420 0.28 4.96 

0-<25° 100 0.515 
±0.049 

-1.435 
±0.551 0.07 5.77 

 
Table 1. Model fitting results in terms of slope categories 

 
 

4. DISCUSSION AND CONCLUSION 

In this study, we found that the field observed and LiDAR 
predicted maximum canopy heights showed good agreement 
(R2=0.81) on the flat terrain (0 to <5° slope). Such a result was 
comparable to the findings in other researches, for example, 
Sun et al. (2007) predicted maximum canopy height using 
GLAS data with agreement of 0.73 and RMSE of 3.4 m on the 
flat terrain.  
 
We also found that, with the increasing terrain slope, the 
performance of regression models declined (Table 1.). Among 
all slope ranges, the regression models performed good up to 
15° in this study. Both of the slope range for valid regression 
models and validation results were similar with those of Lefsky 
et al. (2005a), in which the regression equations explained 
between 59% and 68% of variance of maximum canopy height 
for the slope range between 0 to 15°. In our study area, the 
forest area in the 0 to 15° slope terrain accounts for more than 
72% of total forest area (Zhao and Wang, 2007), we therefore 
could conclude that the regression model in the 0 to 15° terrain 
slope range was capable to be employed for estimating 
maximum canopy height in this study area.  

1050



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008 
 

As shown in Figure 5, the independent model validation 
indicated that the LiDAR predicted heights were lower than the 
field measurements in some plots. Most of those plots were 
corresponding to the GLAS footprints acquired in 2003 and 
2004, which have 2 to 4 year interval to the field investigation 
carried out in 2006 and 2007 respectively. Some growth during 
the time interval may affect the accuracy of the validation. In 
addition, 2 times of field data collections were done both in the 
leaf-on seasons and some of LiDAR footprints were captured in 
the leaf-off seasons, and thus the seasonal effect could be 
another source of errors. It was possible that those leaf-off 
footprints with deciduous trees hit the tree top without leaves, 
and the differences between the leaf-on and leaf-off heights 
could influence the accuracy of the validation.  
 
The study showed that the GLAS waveform data provides 
reasonable prediction for the maximum canopy height in the 
cool temperate forest of Northeast China, but further study 
areas are still needed to evaluate and reduce the terrain effect on 
canopy height estimation using GLAS waveform data, 
especially in the terrain with slope larger than 15°, which is the 
slope limitation for our study area.  
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