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ABSTRACT: 
 
This article examines several major bathymetry mapping methods and describes an experimental procedure of determining seabed 
bathymetry from multi-source passive remote sensing data. Issues to be addressed include how to deal with less desirable spectral 
data quality and the absence of in-situ water depth measurements. A case study was presented using DigitalGlobe QuickBird and 
Landsat-7 ETM+ multispectral images of different dates and spatial resolutions to determine water depth for the Beilun Estuary, 
China. The preliminary results have led to three findings. First, it was feasible to use the tidal water line derived from the near-
infrared bands as a good approximation of water surface when observed tidal data is absent. Second, the reflectance ratio transform 
model developed by Stumpf et al. was proven suitable for spectrally-based water depth estimation when in-situ data is absent. 
Finally, the data quality problem caused by thin clouds could be effectively removed by fusing remote sensing images of two 
different sources. 
 
 

1. INTRODUCTION 

Shallow water bathymetry is important for seabed morphology 
studies, environmental research, and resource management of 
coastal zones. Conventional approaches to bathymetry mapping 
rely on field surveys of water depth at sampled locations. Such 
approaches are however characterized as being labor-intensive 
and time-consuming (Liu et al. 2003). Moreover, it is often 
difficult to achieve the desired mapping accuracy just based on 
a limited number of sampled points. On the other hand, the 
state-of-the-art mapping approaches include using ship-borne 
underwater dragging sonar to record returned sounding signals 
in a fixed time interval for extensive water depth measurements 
(Li et al. 2004). This advanced approach can accurately depict 
the underwater terrain and suitable for marine engineering 
design and construction, but its high cost makes it less 
accessible for generic low-budget research projects with lower 
accuracy requirements. Ever since the 1970s, satellite remote 
sensing technology has been gradually adopted as an alternative 
to minimize field work for clear water bathymetry mapping. 
The synoptic view, easy access, and dynamic nature have made 
the remote sensing approach a rather cost-effective way to 
provide quick solutions to bathymetry mapping for studies of 
the fast-changing coastal environment.   
1 
The ability of light to penetrate the water body provides a 
physical basis for modeling water depth from remote sensing 
spectral data. Specific models, however, can be diverse in their 
structures and constructions. One group of models is based on 
the transmission equation of electromagnetic radiation in water. 
By measuring the optical parameters within the water body, 
water depth can be computed through a theoretical model. 
Using a two-stream assumption, for instance, Lyzenga (1979) 
simplified the classical irradiation equation by neglecting the 
attenuation effect of water body and obtained the relationship 
between water-leaving radiant energy and water depth. These 
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models, however, require a complex estimation for a number of 
water column reflectance parameters, some of which can be 
very difficult to obtain; they thus are not widely used in 
practical water depth mapping (Wang et al. 2007a). Another 
group is empirical models based on the statistical relationship 
between pixel values and field-measured water depth. These 
models require no reflectance parameters of the water column 
and are simplistic in their development; therefore, they are 
widely applied in many case studies. For example, Lyzenga 
(1978, 1981) assumed that there existed a linear relationship 
between water depth and a linear combination of the 
logarithmic radiant intensity and achieved a good water depth 
estimation from one of the new variables resulting from a 
principal component analysis. Zhang (1998) compared 
equations constructed through different arrangements of 
spectral values and water depths from four data subsets of 
satellite imagery and digital bathymetry. He reported to be able 
to bring down the relative errors of the estimated water depth 
from 37% to 17% by calibrating the initial model using an non-
linear, exponential function. Wang et al. (2007b) experimented 
to model the relationship between Landsat-7 ETM+ and in-situ 
water depth measurements through a momentum BP artificial 
neural network, and their case study indicated that the ANN 
model was capable of handling non-linearity inherent in the 
data for better results. However, statistical models are usually 
developed for specific study areas, and the assumption about 
the existence of correlations between in-situ water depth and 
remote sensing data may not hold. This often leads to less 
desirable estimations and the derived models less transferable.  
 
The third group of methods integrates the merits of both 
theoretical and statistical models by simplifying the former 
through the use of statistical regression to estimate the 
photochemical parameters. The existing methods include 
bottom-albedo based single-band models and multi-band ratio 
models, as more commonly seen in the studies outside China 
(Wang et al. 2007a). The initial single-band model assumes an 
ideal situation with vertical homogeneity for water body’s 
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photochemistry, high and invariable bottom albedo, and shallow 
water (Polcyn et al. 1969, 1973). Although rarely found in 
reality, this theoretical model laid an important framework for 
further development. Under the assumption of no variability of 
bottom albedo in relation to bottom composition, Brown (1971) 
achieved higher accuracy of water depth mapping by taking the 
ratio between two bands to minimize the bottom effects. 
Holding water quality and atmospheric conditions constant, 
Philpot (1989) discussed the effects of incrementing the number 
of influencing factors for water depth mapping, including 
bottom composition and water types. The results indicated that 
spectral analysis alone became increasingly unreliable when 
increasing the level of model complexity, unless ancillary data 
such as spatiotemporal data of the image can be also 
incorporated. The most significant progress in this research 
direction was made by two individuals in their efforts to 
minimize the use of in-situ data for light attenuation 
coefficients in water columns. Christian (2001) explored the 
estimation of the attenuation coefficients using only water 
levels present on multi-temporal images in reference to 
simultaneous sea level observations, and obtained  absolute 
water depth directly from remote sensing images. On the other 
hand, Stumpf et al. (2003) was able to reduce five standard 
coefficients down to two for bathymetry mapping by 
developing a reflectance ratio model based on the variable 
radiant absorptivity among spectral bands, and the calibration 
of the model only required a few water depth points from 
nautical charts. With the advantages of minimum requirement 
for in-situ data and robustness in handling complex bottom 
types, this model has been developed into a commercially 
available software module by ENVI™.    
 
This study considers three practical issues in shallow water 
bathymetry mapping. First, as depth modeling from remote 
sensing imagery requires sufficient water clarity, bottom type 
homogeneity, and good atmospheric conditions, in practice 
these ideal conditions are rarely existent simultaneously. This 
study used remote sensing data acquired from two sources and 
dates to compensate the unevenness of data quality. Second, in-
situ water depth data can sometimes be difficult or even 
impossible to acquire for a project at hand. This is particularly 
true when we dealt with a politically sensitive region located 
between two countries in this study. For this we adopted the 
reflectance ratio model by Stumpf et al. to minimize field 
measurements. Third, tidal effects also need to be accounted for 
since image data can only describe water depth at the very 
moment when the orbital sensor passed over. In this study we 
used samples from a nautical chart for the tidal calibration.  
 
 

2. METHODOLOGY 

2.1 Study Area 

The Berlun Estuary is located in the southwest region of the 
Guangxi province, China, with a greater region involved in this 
study ranging from 107°51′ to 108°12′ E longitude and from 
21°25′ to 21°40′ N latitude (Fig. 1). Serving as an international 
border between China and Vietnam, the Beilun River has 
Dongxing, China on its north bank, Henin-Hardenne, Vietnam 
on its west bank, and its water discharged into the vast Beibu 
Gulf of South China Sea. The trumpet-shaped estuary has a 
width of 6 km and a water area of about 66.5 km2, 37.4 km2 of 
which are inter-tidal beaches, and with the under-tide and 
shallow water area of 29.1 km2 (Chen and Qiu, 1999). As a 
coastal region of Guangxi with high precipitation and open to 

the vast water of the sea, the estuary is strongly influenced by 
hydrological dynamics from both the river and the ocean. The 
estuary has been experiencing rapid and constant morphological 
changes, leading to the formation of a highly complex seabed 
terrain. One big issue relating to the environmental change of 
the area is the northward migration of the thalweg at the river 
mouth over the past several decades. This migration was caused 
by the long-time collapse of bank soils and beaches being 
washed away on the northern side of the Beilun estuary, which 
in turn resulted from the river and ocean dynamics as well as 
the increasing intensity of human activities in the region. The 
bathymetry mapping project is part of the effort to build an 
inventory of natural resources and manage the tropical 
ecosystem in the region, as well as providing important 
theoretical parameters and scientific basis for the thalweg 
monitoring and related decision making. 
 
 

 
 

Figure 1. The study area is located in the south coast of China   
 
 

2.2 Spectral and Ancillary Datasets 

The major datasets selected for this study included two remote 
sensing images, with each from a different space-borne sensor 
system, and one 1:25,000-scale nautical chart. One image was 
QuickBird multispectral data acquired on 11-03-2003. With 
four spectral bands (3 visible and 1 near infrared) and a spatial 
resolution of 2.44 m, this dataset was deemed suitable for high-
precision bathymetry extraction. The primary evaluation of the 
QuickBird data revealed that although the overall quality of the 
image was good, there existed some thin cloud over the lower 
portion of the image (Fig. 2a). That formed the reason for 
looking into other sources for supplementary data. The second 
image was a Landsat-7 ETM+ dataset acquired on 11-06-2000 
with seven spectral bands and excellent data quality, yet a 30-m 
spatial resolution. Due to budget constraints and data 
availability, this was the only choice for this project. The 
nautical chart contained bathymetric lines in a 5-m interval, 
which were used as a surrogate for the field-measured water 
depth for image tidal correction. 
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a. QuickBird (band 4, 3, 2)      b. Landsat ETM+ (band 4, 3, 2) 
 

Figure 2.  Multipspectral images of the study area (the Beilun 
Estaury) located along the land-water interface of Beihai Gulf 

 
2.3 Data Preparation 

Several steps were involved in the preparation of the spectral 
and bathymetric data for water depth mapping. They included 
atmospheric correction, geometric correction, tidal correction, 
and the extraction of bathymetric values from the nautical chart 
and the corresponding pixel values from both images. A 
detailed discussion is provided below. 
 
2.3.1 Atmospheric Correction:  The atmospheric correction 
is based on the algorithm developed by Gordon et al. (1983) 
and by Stumpf and Pennock (1989) for several remote sensors, 
including Coastal Zone Color Scanner, Advanced Very High 
Resolution Radiometer, and Landsat Thematic Mapper. In this 
model, the reflectance of water, Rw, of a particular spectral band 
is defined as 
 
 

 ( )
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d

w
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LR =                        (1) 

 
 
Where  Lw = the water-leaving radiance 
 Ed = the down-welling irradiance entering the water 
 λ = the wavelength of the spectral band 
 Rw = found by correcting the total reflectance RT for 

the aerosol and surface reflectance, as estimated by 
the near-IR band, and for the Rayleigh reflectance Rr. 
This can be expressed as  

 
 

( ) ( ) ( )irIRiTw RYRR λλλ −−=                                (2) 
 
 

Where     i = denote visible bands  
               IR = near-infrared band 
               Y = the constant to correct for spectral variation and 

depends on aerosol type. 
 
In this study, the correction presumes a maritime atmosphere 
with a spectral variation similar to that of the water surface 
specular reflectance. This assumption is reasonable for the 
ETM+ data as well as the portion of the QuickBird data with no 
cloud cover. Water vapors with large diameters might require a 
separate aerosol correction. Since we intended to replace the 
bad portion of the QuickBird data with the ETM+ data, this 
rather complex atmospheric correction procedure was not 
performed. 

2.3.2 Geometric Correction: Images from both sources 
were first rectified to a set of ground control points derived 
from large-scale topographic maps of the study area and then 
transformed to the Universal Transverse Mercator projection 
with the WGS84 datum. The ground control points were 
carefully selected and fine-tuned to manage the final error down 
to below half of the image pixel. The relative error between the 
two images after image-to-image registration was kept down to 
±15 meters. 
 
2.3.3 Tidal Correction: Both the QuickBird image and the 
ETM+ image recorded the water depth of the particular 
moments when the respective orbital sensors passed over the 
study area, whereas the water depth marked on the nautical 
chart was already corrected to the theoretical sea level datum of 
China (i.e. 1956 Huanghai Mean Sea Level). Therefore, the 
image-induced water depth needs to be standardized to the same 
datum. With no sea level observation station in the study area 
and other sources for tidal correction parameters, an alternative 
and indirect approach was used in this study. By taking the 
advantage of close to total absorption of near infrared energy in 
clear water, the water-land interface was demarcated using the 
near infrared band of each image for its acquisition date and 
time. Specifically as shown by the case of land-to-water 
spectral profiling in Fig. 3, the reflected energy drops rapidly 
when moving from land to water along the profile in 
comparison to the reflected red and green energy, forming a 
sharp tonal contrast between water and land on the image. 
Therefore, the value of the turning point on the spectral curve of 
the profile was matched to the water depth value measured at 
the same location on the nautical chart for tidal correction. The 
addition of the offset value to the image-induced water depth 
resulted in the standardized water depth for the satellite’s 
passing-over time for both images.   
 
 

   

Band2 

Band3 

Band4 

a. Location of the profile         b. patterns of pixel value 
change 

 
Figure 3. A land-to-water spectral profile, showing the pixel 
value change in different bands with the change of distance 

 
2.3.4 Water Depth Extraction Model: Water absorptivity 
varies spectrally from band to band. As the depth increases, the 
reflected irradiance decreases faster in the high-absorptivity 
spectral band (e.g. green band) than in the low-absorptivity 
band (e.g. blue band). Based on that, Stumpf et al. (2003) 
developed a reflectance ratio model as follows.  
 
 

( )( )
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Where  Rw(λi) and Rw(λj) = the atmospherically-corrected pixel 
value for bands i and j 

m1 = a tunable constant to scale the ratio to depth 
n = a fixed constant, mainly for ensuring a positive 
value after the log transform and a linear response 
between the ratio and the depth 
m0 = an offset value when Z = 0 

 
In the ratio model, only two parameters (i.e. m0 and m1) need to 
be estimated. Procedurally, we first corrected the tidal effect on 
the remotely sensed data to the bathymetric datum, then 
computed for blue and green bands the averages of the pixel 
values of along the 0-m and -5-m bathymetric lines, which were 
input into the model to estimate equation coefficient m1 and 
constant m0. These parameters were further fine-tuned for 
producing better matches between the model output (Z) and the 
sampled in-situ data until the root mean squared error (RMSE) 
of the model was managed down to an acceptable level.  
 
2.3.5 Fusion of QuickBird and Landsat ETM+ data: As 
mentioned earlier, the reason for using two spectral images of 
different sensors was due to the data quality and data 
availability problems. The high-resolution QuickBird data 
provided a great base image for large-scale bathymetry 
mapping, but the lower left portion of the image suffered from 
cloud covers. In the absence of another image with comparable 
resolution, we found the high-quality, medium-resolution 
ETM+ image a suitable supplement for this study.  
 
The fusion of the two spectral datasets was conducted in the 
following steps. The water depth was first derived from each of 
the images following the procedure discussed in sections 2.3 
and 2.4. This resulted in two digital bathymetry maps of the 
different times. These two depth maps were then overlaid and 
analyzed to explore their co-variability (Fig. 4). A profile was 
constructed across the study area, deliberately crossing the area 
with no cloud and the area with thin cloud. The profile plot (Fig. 
4b) indicated that there was a close match on the first part of the 
profile between the two derived water depths until it reached 
the 170th pixels along the profile. This 170th pixel is exactly the 
break point between the no-cloud region and the cloud-covered 
region. This suggested that in the region where there was no 
cloud cover, the water depth patterns produced from both the 
QuickBird and ETM+ images were comparable to each other. 
In other words, it was reasonable to replace the cloud-covered 
portion of the QuickBird-induced water depths with the 
corresponding ETM+ results.  
 
 

 
 
a. Profiling of the overlain          b. Covariablity of water depth 
water depth images                     along the profile  

 
Figure 4. Overlay of water depths induced from the two 

multispectral images for covariability analysis 

The effectiveness of the data fusion was further evaluated by 
applying simple correlation analyses to the water depth data for 
the cloud-covered and no-cloud regions, respectively.  The two 
regions were identified using a cloud mask developed directly 
from the QuickBird image. The analytic results revealed a sharp 
contrast between the two regions. The correlation coefficient 
for the no-cloud region is 0.74, compared to 0.26 for the cloud-
covered region. Therefore, water depths derived from spectral 
data under a cloudy condition were proven unreliable, and their 
replacement by quality data of a different source or time 
became necessary. Water depth maps after data fusion were 
shown in Fig. 5. The morphology of the seabed in the estuary 
can be clearly seen on the maps of different scales. Yet the 
larger scale (i.e. 1:10,000) map revealed some artifacts with a 
regular texture, seeming as a result of the pixel size. Although 
not done in this study, presumably these artifacts could be 
removed through a spatial filter. 
 
 

 
 

Figure 5. Water depths mapped from QuickBird, with a lower 
left portion being replaced by the ETM+ induced results 

 
 

3. DISCUSSION AND CONCLUSION 

The remote sensing approach demonstrated in this study was 
proven effective for clear, shallow water bathymetry mapping. 
This is especially true when the study area is inaccessible for 
field data collection, such as the case in the Beilun estuary. Two 
biggest challenges identified in this article were lack of in-situ 
data and uneven quality of spectral data within the same image. 
This study evaluated existing computer-based models that 
utilize multi-date remote sensing data to compensate the lack of 
field data for model calibration and verification. The model 
implemented in the study required only two parameters to be 
estimated, and thus greatly reduced the constraints for large 
amount of field data. It proved feasible when it was possible to 
correct tidal effects on images of different dates, and this 
correction was done by deriving a few bathymetric values from 
a nautical chart. The study also investigated strategies of using 
spectral data from different sources or dates to alleviate the 
atmospheric effects on remote sensing imagery of tropical and 
subtropical regions. The degree of success was proven largely 
depending on the comparability of images in terms of spatial 
and spectral resolutions. The Quickbird and ETM+ used in this 
study are compatible in spectral resolution for bathymetry 

1:10,000 

1:100,000
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mapping, but their spatial resolutions are too much far apart. 
Although the resultant water depths had a good correlation 
between ETM+ and Quickbird, replacing a 2.44-m water depth 
data with that of 30 m could greatly degrade the precision and 
subsequently downplay the usefulness of the final product.    
 
Scrutiny of the derived water depth values along the profile in 
Fig. 4b reveals that the two curves do not match with each other 
really well even for the no-cloud portion of the study area. 
While both curves have the similar trend, the QuickBird results 
seem to always overstep the ETM+ results in both low and high 
values. This phenomenon might be caused largely by the 
difference of spatial resolution as well as, to a lesser degree, 
possible morphological changes due to the large time interval 
(i.e. three years) between the images. In the first case, 
morphological details that were captured by the high-resolution 
QuickBird sensor might have been averaged into a single, 
lower-resolution pixel of ETM+, so that the peaks and valleys 
on the QuickBird curve were flattened towards their opposite 
directions. This implies that it is important to acquire remote 
sensing data with compatible spatial resolutions if consistency 
and high precision are required in bathymetry mapping. 
 
The bathymetry mapping approach introduced in this study still 
needs more rigorous field verification and further improvement. 
The model could be further adjusted using field measurements 
with a finer magnitude for better results. Since the primary 
purpose of this study was to build a GIS database for a long-
term monitoring of the coastal environment in the region, 
collecting and analyzing remote sensing data and ancillary data 
for land and water characterization will be a continuous effort. 
This will allow us to re-evaluate the approach and procedure 
presented in this study and search for better solutions. 
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	The effectiveness of the data fusion was further evaluated by applying simple correlation analyses to the water depth data for the cloud-covered and no-cloud regions, respectively.  The two regions were identified using a cloud mask developed directly from the QuickBird image. The analytic results revealed a sharp contrast between the two regions. The correlation coefficient for the no-cloud region is 0.74, compared to 0.26 for the cloud-covered region. Therefore, water depths derived from spectral data under a cloudy condition were proven unreliable, and their replacement by quality data of a different source or time became necessary. Water depth maps after data fusion were shown in Fig. 5. The morphology of the seabed in the estuary can be clearly seen on the maps of different scales. Yet the larger scale (i.e. 1:10,000) map revealed some artifacts with a regular texture, seeming as a result of the pixel size. Although not done in this study, presumably these artifacts could be removed through a spatial filter.
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