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ABSTRACT: 

 

The availability of time series of water and land surface energy budgets over China area is essential for understanding the 

environmental system and potential climate change in this area. However, consistent observations of the land surface state variables 

are routinely unavailable. In the absence of long-term observations of the components of the water and land surface energy budgets, 

modeling can provide consistent fields of land surface fluxes and states. We simulated the components of surface energy balance 

(SEB) equation using Land Information System (LIS) for time period of 2002.11-2003.12. Residual analyses of SEB indicate that the 

distribution of residuals show some spatial and temporal characteristics. The temporal characteristics of residual distribution suggest 

that LIS can simulate energy flux better in spring and summer than in other time. The spatial characteristics indicate that LIS can 

simulate energy flux better in places with relative low latitude or low altitude than in places with either higher latitude or higher 

altitude. This kind of temporal and special distribution pattern probably related to the parameterization of snow albedo. The results of 

comparison between simulated and MODIS land surface temperature(LST) indicate that mostly difference between two LST are 

within ±5K. The scatter plots and standard deviation suggests that the simulated LST of night_view_time is 2-3K accurate than that 

of day_view_time. 

 

 

1.  INTRODUCTION 

 

The availability of time series of water and land surface energy 

budgets over China area is essential for understanding the 

environmental system and potential climate change in this area. 

However, consistent observations of components of the land 

surface water and energy budgets are routinely unavailable over 

large scales (Sheffield et al. 2006). Otherwise, the 

heterogeneity in topography, soil, and vegetation characteristics 

further complicates the difficulty with interpretation of the 

traditional ``point'' measurement on the local scale and the 

understanding of its dynamics (Fei Chen et al. 2004). On the 

other hand, increasingly improving remote sensing techniques 

hold the promise of monitoring the surface soil moisture and  

surface energy budgets at high resolution over a large domain 

up to global scale, but remote sensing is restricted to indirect 

quantities, in the case of soil moisture, to low-vegetated regions 

and the top few centimeters. Another way to estimate 

large-scale water and energy cycle terms is to use land surface 

models, in either offline or coupled modes (e.g., Lau et al. 1994; 

Liang et al. 1994; Levis et al. 1996; Werth and Avissar 2002). 

Land surface model close the water and energy budget by 
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 construct, so if the meteorological forcing data are accurate and 

model biases are small, these constructed water and energy 

balance terms might be used in lieu of observations and provide 

a consistent picture of the water and energy budgets(Sheffield 

et al. 2006). Unfortunately, it is hard to completely remove 

errors in forcing data and model biases. So with these state 

variables being integrated forward the errors in land surface 

forcing and parameterization are accumulated, which leads to 

incorrect surface water and energy partitioning. Results from 

the North America Land Data Assimilation System project (K. 

E. Mitchell et al. 2004) indicated that first-order errors in the 

land surface simulations were due to inaccurate specification of 

the forcings and especially in precipitation (Robock et al. 2003; 

Pan et al. 2003). Actually, analyses of water and energy cycle 

variables estimated through observations (in situ and/or remote 

sensing) will not provide water cycle closure (Roads et al. 2003; 

Pan and Wood 2004) because of sampling and retrieval errors.  

 

However, many innovative new land surface observations are 

becoming available that may provide additional information 

necessary to constrain the initialization of land surface states 

critical for long-term prediction. These constraints can be 

imposed in two ways. Firstly, by forcing the land surface 

primarily by observations (such as precipitation and radiation), 

the often severe atmospheric numerical weather prediction land 

surface forcing biases can be avoided. Secondly, by employing 

innovative land surface data assimilation techniques, 

observations of land surface storages can be used to constrain 

unrealistic simulated storages (Paul R. Houser et al. 2000). 

Global Land Data Assimilation System, which is developed 

jointly by scientists at the National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Center (GSFC) 

and the National Oceanic and Atmospheric Administration 

(NOAA) National Centers for Environmental Prediction 

(NCEP) (M. Rodell,2004), is a high-resolution, near-real-time 

land data assimilation scheme using relevant remotely-sensed 

and in-situ observations within a land data assimilation 

framework.  

 

In this study we used Land Information System, which is the 

software platform of GLDAS, to simulate the components of 

land surface energy budget over China area, and test the 

internal consistency of LIS using residual analyses method. We 

also compared simulated land surface temperature with the 

Moderate Resolution Imaging Spectroradiometer Aqua Land 

Surface Temperature/Emissivity Daily L3 Global 0.05Deg 

CMG data over this area. 

 

 

2.  STATE VARIABLES SIMULATION 

 

LIS core can invoke several community land surface models 

such as CLM (Dai et al. 2003), and Noah (Chen et al. 1996; 

Koren et al. 1999). In this study we use Noah land surface 

model to simulation the surface state variables. The Noah land 

surface model was developed by the US National Centers for 

Environment Prediction and other investigators from both 

public and private institutions under the framework of the 

Global and Energy Water Cycle Experiment (GEWEX) 

Continental-Scale International Project (GCIP). 

 

2.1 Input Data 

 

The input data to Noah land surface model include following 

data sets:  

Forcing data: in this study we use the Global Data 

Assimilation System (GLDAS), which is the operational global 

atmospheric data assimilation system of NCEP (Derber et al. 

1991), to provide near-surface air temperature, near-surface 

specific humidity, near-surface wind field, surface pressure, 

downward shortwave radiation, and downward longwave 

radiation. The precipitation is provided by observation-derived 

National Oceanic and Atmospheric Administration (NOAA) 

Climate Prediction Center’s (CPC’s) operational global 2.5° 

5-day Merged Analysis of Precipitation(CMAP), which is a 

blending of satellite and gauge observations. GDAS modeled 

precipitation fields are used to disaggregate the CMAP fields 

spatially and temporally to match the GLDAS resolutions. 

 

Land surface parameter. Vegetation: In this simulation, we 

use a static,1-km resolution, global dataset of land cover class 

that was produced at the University of Maryland(UMD) based 

on observations from the Advaced Very High Resolution 

Radiometer(AVHRR) aboard the NOAA-15 stelllite (Hansen et 

al. 2000). We also employs monthly greenness fraction 

climatology data (G. Gutman et al. 1998), which is derived 

from NOAA/AVHRR normalized difference vegetation index 

(NDVI) data, as an input to evapotranspiration schemes in 

Noah model. Soil: The soil parameter data used in this study 

were derived from the 5’ resolution soil map of the world, 
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 global soil profile databases (Reynolds et al. 2000). Porosity 

and the percentages of sand, silt, and clay were horizontally 

resampled to 0.25° grid and vertically interpolated to 0-2-, 

2-150-, 150-350-cm depths. Elevation: The global 30-arc-s 

GTOPO30 were averaged onto 0.25° grid, and are used to 

corrects the modeled temperature, pressure, humidity, and 

longwave radiation forcing fields based on the difference 

between the LIS elevation definition and the elevation 

definition of the model that created the forcing data, following 

Cosgrove et al.(2003). The other parameter datasets include 

Quarterly albedo climatology using as surface albedo fraction 

(snow-free), Maximum snow albedo, bottom temperature 

serves as the annually fixed soil-temperature bottom-boundary 

condition, Noah soil look-up table, and UMD land/sea mask.   

     

2.2 Output Fileds 

 

The output variables of LIS are listed in tab.1. In this study we 

emphasized on the surface energy budgets, so the net shortwave 

radiation, net longwave radiation, latent heat flux, sensible heat 

flux, and ground heat flux are used to test consistency. The 

average surface temperature are selected to compare with 

MODIS MYD11C1 0.05Deg. CMG land surface temperature 

data. 

Table 1. LIS output fields 

Output fields unit 

Latent, sensible, and ground heat flux W/m2 

Net surface shortwave and longwave radiation W/m2 

Soil moisture of 4 layers, RootMoist kg/m2 

Soil Wetness - 

Soil temperature of 4 layers, Average surface 

temperature 

K 

Snowfall and rainfall kg/m2/s

Snow water equivalent kg/m2 

Change of soil moisture, Change of snow water 

equivalent 

kg/m2 

Surface and subsurface runoff kg/m2/s

Snowmelt kg/m2/s

Vegetation transpiration, Bare soil evaporation, 

Total Evapotranspiration 

kg/m2/s

Albedo - 

 

2.3 Study Area and Time Period 

The study area was chosen as northeast part of Asian 

(15.75-56°N, 70.75-138°), mainly in China area. The 

simulation time period is from 2002.11.01 to 2003.12.01. The 

spatial resolution is 0.25°×0.25°, and the temporal resolution 

is 3-hourly (UTC 00, 03, 06 ,09, 12, 15, 18, 21).  

 

 

3. RESIDUAL ANALYSIS AND COMPARISON OF 

LAND SURFACE TEMPERATURE  

 

3.1 Residual Analysis of Simulated Energy Budget 

 

As required in the PILPS experiments for phase 2a (Chen et al. 

1997), outputs from a land surface scheme should first be 

checked to ensure the conservation of energy and water. This 

requirement is absolutely necessary since it is extremely 

difficult, if not impossible, to know whether or not a scheme’s 

algorithms are valid. The surface energy balance (SEB) 

equation can be given as  

 

Rnet = SWnet+LWnet = (1-α)S↓+εL↓-εσTsfc4 

           = Qle+Qh+Qg       (1) 

 

Where the coefficient α in (1) is the surface albedo, σ is the 

Stefan-Boltzmann constant, and ε is the ground surface 

emissivity. The Rnet is the net radiation, which is consist of net 

shortwave radiation and net longwave radiation. S↓, L↓ and 

Tsfc are incoming shortwave radiation, incoming longwave 

radiation and ground surface temperature respectively. On the 

right-hand side of (1), Qle and Qh are the latent and sensible 

heat fluxes, respectively. The term Qg is the soil heat flux at the 

surface. We calculated the quarterly averages of the 

components in the SEB equation from simulated data, and 

analyzed the residual of SEB equation, with the residual 

defined as the difference between the left- and the right-hand 

sides of the equation, which can be written as  

 

Residual=Rnet-(Qle+Qh+Qg)  (2). 

 

Figure 1 shows the spatial distribution of quarterly residual of 

SEB equation and it’s histogram in study area in 2003. We 

make a statistic of the residuals of 33720 grids (excluding 9589 

grids for water body). It indicates that the distribution of 

residuals show some spatial and temporal characteristics. The 

percentage of grids with absolute value of residual less than 3 

W/m2 are 94.42%, 95.64%, 96.9%, and 68.61% in winter(DJF), 
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 spring(MAM), summer (JJA) and autumn(SON) ,respectively. 

The percentage of grids with absolute value large than 10 W/m2 

are 2.99%, 0.31%, 0.43%, 3.97% in winter, spring, summer and 

autumn, respectively. And the percentage of grids whose 

absolute value large than 3 W/m2 and less than 10 W/m2 are 

2.59%, 4.03%, 2.67%, and 27.42% in winter, spring, summer 

and autumn, respectively. Those grids mainly distribute in 

south and middle part of Qinghai-Tibet plateau and in 

North-East part of China, including Heilongjiang, part of Jilin 

and Liaoning province, and east part of inner Mongolia. The 

geo-distribution of residual for yearly average has the same 

spacial pattern(not show ). 

 
Figure 1. Spatial distribution of Quarterly residual of SEB 

equation and its histogram over China area, 2003 

 

The temporal characteristics of residual distribution suggest 

that LIS can simulate energy flux better in spring and summer 

than in autumn and winter. The spacial characteristics of 

residual distribution indicate that LIS can simulate energy flux 

better in places with relative low latitude or low altitude than in 

Qinghai-Tibet plateau and North-East part of China, which has 

either higher latitude or higher altitude. The temporal and 

special distribution pattern of residual most probably related to 

the parameterization of snow albedo in LIS-Noah land surface 

model. It is obviously known that snow have great effects on 

land surface energy balance, because it can greatly changes the 

albedo of land surface. In autumn and winter the snow occur 

and it is easier remained in relative high latitude and high 

altitude areas in China. In LIS-Noah model the snow albedo is 

calculated based on the snow cover, Quarterly albedo 

climatology and Maximum snow albedo datasets. It is supposed 

that directly using the MODIS-derived albedo data is better.  

 

3.2 The Comparison of Land Surface Temperature 

Between Simulated and MODIS 

 

We compared the simulated Noah land surface 

temperature(LST) with MODIS MYD11C1 land surface 

temperature/emissivity daily L3 global 0.05deg CMG product. 

This product contains day_view LST and night_view LST . 

Because this product is usually contaminated by cloud, we 

make a statistic of the grid with valid value (means there were 

no cloud over this grid when the satellite passed by) of every 

day’s data from 2003.01.01 to 2003.12.01. We selected one 

day_view  LST product whose cloud coverage is least in each 

uneven month and one night_view LST product whose cloud 

coverage is least in each even month to be used in calibration 

the simulated LST. These days are 2003.01.20, 2003.02.06, 

2003.03.23, 2003.04.06, 2003.05.01, 2003.06.02, 2003.07.17, 

2003.08.24, 2003.09.22, 2003.10.22, and 2003.11.17.   

 

In order to compare the LST in same spacial scale in 0.25°, we 

preprocessed the MYD11C1 product and the simulated LST by 

following strategies: (1) we aggregated the selected MYD11C1 

LST to 0.25°spacial resolution, the upscaling strategy is in 

every 25 0.05° grids if there are more than 18 grids have valid 

LST then we use the average of these grids as the value of the 

aggregated grid so that the cloud coverage of this grid is less 

than 28%. The percentage of area for places with cloud 

coverage less than 28% in study area for selected days 

mentioned above are 44.6%, 58.6%, 47.4%, 49.3%, 54.1%, 

51.7%, 43.1%, 43.9%, 50.8%, 45.9%, 51.4%, respectively. 

Those who don’t satisfy the aggregated condition, we set their 

values as undefined values. (2) Each MYD11C1 grid has it’s 

own view time, and these view time are different, so we 

aggregated the corresponding view time of each selected 

MYD11C1 product using the same strategy in (1), then we 
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 interpolated the simulated Noah LST to the aggregated 

MYD11C1 LST in temporal and matched the simulated data 

with the 0.25° MYD11C1 data. Figure 2 showsthe temporal 

and special interpolated MYD11C1 and simulated data of 

2003.04.06 as an example, the first panel is the original 

MYD11C1 night_view_time, the second panel is spatial 

interpolated MYD11C1 night_view_time, the third panel is the 

spatial interpolated MYD11C1 LST, and the fourth panel is the 

temporal interpolated and special matched simulated Noah LST. 

As to the spatial interpolation strategy, because using the 

averaged value as the aggregated grid value, the errors of 

aggregated LST are reduced than original ones. So the 

aggregated MYD11C1 LST can objectively represent the LST 

of 0.25° grids. As to the temporal interpolation strategy, the 

temporal resolution of simulated LST are 3-hourly, the result is 

interpolated from adjacent two simulated Noah LST. 

 

Figure 3 shows the spatial distribution of difference between 

simulated Noah LST and MYD11C1 LST, and the 

corresponding scatter plot of the two LST for selected days. 

Those plots show that the simulated Noah LST and the 

aggregated MYD11C1 LST have very similar spatial 

distribution pattern and the differences between them are 

mostly within ±5K. There are also few differences whose 

absolute values are larger than 5K, which sparsely distributed 

in study area without explicit spatial pattern. 

Table 2. The statistic characteristics of the simulated surface 

temperature with MYD11C1 LST. 

y=ax+b 

 Date a b 

Correla 

-tions 

Std Dev

(K) 

03.01.20 1.033 -5.520 0.915 8.133 

03.03.23 0.893 35.598 0.833 9.744 

03.05.01 1.127 -32.392 0.835 8.840 

03.07.17 0.913 29.138 0.666 7.904 

03.09.22 0.803 62.309 0.687 8.224 

D 

a 

y 

 03.11.17 1.024 -5.082 0.947 5.601 

03.02.06 1.031 -13.118 0.932 7.069 

03.04.06 1.058 -18.579 0.914 6.045 

03.06.02 0.991 2.093 0.888 4.125 

03.08.24 0.822 50.410 0.793 4.210 

N 

i 

g 

h 

t 03.10.22 1.025 -8.007 0.924 4.468 

Note: x represent Noah simulated surface temperature, y 

represent the MYD11C1 surface temperature. 

Table 2 gives some statistic characteristics of the simulated 

surface temperature with MYD11C1 LST. In general, the 

correlation coefficient of simulated day_view LST is greater 

than that of simulated night_view LST. The standard deviation 

between two LST explicitly indicate that the simulated 

night_view LST is 2-3K accurate than the simulated day_view 

LST. 

 

 

4. CONCLUSIONS 

 

Land Information System is developed to be used in studying 

and simulating the water and energy budget occurred in land 

surface. In this study we use LIS to simulate the components of 

surface energy budget equation, the results of consistency test 

and comparison of simulated LST with MYD11C1 LST 

suggest that LIS is a proper choice to study surface energy 

budget issues.  
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