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ABSTRACT: 
 
This paper investigates the relationship between the surface urban heat islands (SUHI) and the percent impervious surface area 
(%ISA) in Shanghai, China. The %ISA was characterized from a Landsat-7 ETM+ multispectral dataset using the Linear Mixture 
Spectral Analysis (LMSA). Several critical steps being taken to derive %ISA were discussed, including atmospheric and geometric 
correction, water feature masking, endmember selection through the maximum noise fraction transformation, spectral unmixing for 
endmember fractions, and accuracy assessment. The resultant %ISA was qualitatively evaluated by visually comparing its spatial 
patterns to the landuse pattern of Shanghai. The spatial variability of land surface temperature (LST) to %ISA was evaluated and 
compared to the variability between LST and NDVI, a conventional factor for SUHI prediction. The results indicated a strong and 
significant correlation between LST and %ISA for the spectral data involved in the study and virtually no relationship at all between 
LST and NDVI. The strong LST to %ISA relationship suggested that it was exactly %ISA that accounted for a large share of the 
urban heat island problem in Shanghai. 
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1. INTRODUCTION 

Urban ecosystems concentrated most human impacts on 
environment and leaded to many meteorological problems. 
(Ridd, 1995; Newman & Kenworthy, 1999) One of them is 
urban heat island, which refers to the phenomenon of higher 
atmospheric and surface temperature occurring in urban areas 
than in the surrounding rural areas due to urbanization (Voogt 
& Oke, 2003). Surface urban heat islands (SUHI) are one of the 
three widely recognized heat island types (the other two being 
canopy layer heat island and boundary layer heat island) that 
was easy to derive from remote sensing images (Fei & Marvin, 
2006).  
 
Identification and characterization of SUHI are typically based 
on land surface temperature (LST) that varies spatially much 
due to the complexity of land surface, which can be seen as a 
combination of impervious surface materials, green vegetation, 
and exposed soils as well as water surfaces. These materials are 
the most fundamental components of urban ecosystems (Ridd, 
1995). The area and intensity of impervious surface vary most 
significantly between urban areas and suburban areas, and its 
presence is deemed a major predictor of the SUHI. 
 
Traditional methods for deriving impervious surface (e.g. 
manual interpretation and computer-based unsupervised and 
supervised classification) are highly dependent on personal 
experience and often cannot provide sufficient accuracy for 
practical use. Since most urban pixels contain spectral mixture 
of several different surface materials, many researchers have 
been seeking various ways to retrieve imperviousness at the 
sub-pixel level. Ji and Jensen (1999) used sub-pixel analysis 

and a layered classification to estimate %ISA for coastal urban 
environmental assessment. Flanagan and Civco (2001) 
developed a method using artificial neutral networks to derive 
impervious surface fraction. Using a linear spectral mixture 
model (LSMM), Small (2001, 2002) acquired three 
endmembers (i.e. vegetation and low and high elbedos) to 
unmix fractions from remote sensing imagery for New York 
City. Wu and Murray (2003) implemented a linear mixture 
pixel analysis (LMSA) to estimate impervious distribution and 
proposed that impervious surface could be seen as a linear 
combination of high elbedo and low elbedo. From their 
researches we can see that LSMA was an efficient method for 
deriving %ISA. 
 
As the largest metropolis and one of the most important 
economic regions in China, Shanghai has been experiencing 
rapid urban sprawls since the 1980s, and its urban heat island 
can present a huge environment problem. Investigating proper 
methods for studying the urban heat island effects in Shanghai 
has become an urgent task for understanding the dynamics of 
the local energy and carbon transfer and management of urban 
air quality. The paper presented here describes our attempt to 
apply the method of linear mixture spectral analysis to derive 
%ISA from remote sensing imagery and test the relationship 
between %ISA and LST. In this study we used Landsat ETM+ 
as the major source of data for the derivation of both %ISA and 
LST for Shanghai. Our purpose was to determine whether the 
strong relationship between %ISA and LST, as being indicated 
in the existing studies for other regions (Fei & Marvin, 2006; 
Weng & Lu, 2007), will still hold for this particular case study.  
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2. METHODS 

2.1 Study area 

An area of 1790 km2 was selected in the central metropolis of 
Shanghai, China (Figure 1), which is one of the domestic 
regions experiencing most rapid urbanization in the past 30 
years. It covers the central urban area of Shanghai and some of 
its surrounding towns and suburbs and includes most of the 
representative urban land use types: Old and high density 
buildings, new and low density buildings, roads, parks, farms 
and water. This selected region is at the estuary of Yangtze 
River and adjacent to East China Sea, and its climate is 
dominated by East Asian Monsoon. So it is unique in 
urbanization and urban climate. 
 
 

 
 

Figure 1. The study area: City of Shanghai, located on the east 
coast of China (modified from Wu et al., 2005) 

 
 
2.2 Data preparation 

A Landsat-7 ETM+ image scene (Row 118/Path 038) of July 
3rd, 2001 was selected for this study. The multispectral image 
data consists of eight spectral bands (three visible, one NIR, 
two MIRs, and two thermals) and has a spatial resolution of 30 
meters for the reflective bands and 60 meters for the thermal 
bands. The overpass time is about 10 o'clock a.m., and the sun 
elevation angle is 65.8°. Airborne images acquired in 2003 but 
on a nearby date were also collected for the identification of 
land surface materials and the validation of classification results.  
 
All these images were geometrically rectified to the Transverse 
Mercator (TM) projection. The ground control points were 
carefully selected to make sure the RMS errors were kept below 
0.5 pixels. A second-order polynomial and the nearest neighbor 
resampling method were employed for implementing the geo-
rectification. 
 
In terms of atmospheric correction, the digital numbers (DN) of 
the ETM+ image were converted to normalized exoatmospheric 
reflectance using the formula (i.e. equations (1) and (2)) 
provided by the Landsat 7 handbook (NASA, 2008). The 
calibration parameters can be retrieved from the image head 
files and the NASA website. 
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where  Lλ = spectral radiance 

ρP = exoatmospheric reflectance 
 d = the Earth-Sun distance 
 ESUNλ = mean solar exoatmospheric irradiance 
 θs = solar zenith angle  
 
For the relatively small size of the study area and the fair 
atmospheric condition when the ETM+ image was acquired, we 
assumed a good and homogenous quality throughout the image. 
Complex calibration for removing atmospheric effects was not 
required here, since relative values for impervious surfaces and 
land surface temperature are sufficient to achieve the objective 
of this study (Wu & Murray, 2003). 
 
2.3 Land surface temperature 

Regardless of atmospheric attenuation, LST can be derived 
from spectral radiance by the following two formulas (NASA, 
2008; Artis & Carnahan, 1982). 
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where  Lλ = spectral radiance 
 TB = at-satellite brightness temperature 
                St = land surface temperature 

K1 = 666.09 W m-2 sr-1 μm-1 
 K2 = 1282.71 K 
 λ = 11.457 μm 

ρ = 1.438 × 10
-2 
m K 

 ε = emissivity  
 
As to emissivity, Weng (2001) commented the research by 
Nichol (1994) and proposed a simple grouping, that is, 0.95 for 
vegetative areas and 0.92 for non-vegetative areas. 
 
2.4 NDVI 

The derivation of Normalized Difference Vegetation Index 
(NDVI) is a standard procedure and has been well documented 
in the literature. This study simply adopted this standard 
mathematical form as below. 
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where  RNIR = reflectance in near infrared band 
 Rred = reflectance in red band 
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2.5 Impervious surfaces 

The characterization of imperviousness at the subpixel level 
will be performed by using the linear mixture spectral analysis 
(Wu & Murray, 2003). The pixel unmixing model requires that 
water features be removed from the spectral data since they 
cannot be treated as an endmember due to its low albedo. 
Furthermore, the use of a maximum noise fraction 
transformation is a common practice to assist the selection of 
endmembers for linear mixture spectral analysis. Therefore, the 
analytical procedure involved several steps as discussed below.  

 
2.5.1 Water body masking:  Normalized difference water 
indices (NDWI) have been proven an efficient way to represent 
water information on remote sensing imagery (McFeeters, 
1996). In this study, we utilized NDWI as a mask to remove 
water bodies from the ETM+ spectral data before conducting 
linear mixture spectral analysis (LMSA). The mathematical 
definition of NDWI is given below.  
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where  RGREEN = reflectance in green band 
 RNIR = reflectance in near infrared band 
 
2.5.2 MNF transform:  The maximum noise fraction (MNF) 
transformation places most of the variances of the spectral 
bands into the first two or three resultant components. It is an 
improved variant of Principle Component Analysis (PCA) by 
ordering components according to signal-to-noise ratios (SNR) 
(Green et al., 1988). The MNF components of the ETM+ image 
were illustrated in Figure 2. 
 
 

   
MNF1                         MNF2                     MNF3 

   
MNF4                         MNF5                     MNF6 

 
Figure 2. MNF components 

 
By visual inspection of the MNF component images in Figure 2, 
we decided to choose the first two components for further 
analysis and discarded the rest due to their low signal-to-noise 
ratio.  
 

2.5.3 Linear spectral unmixing:  To establish a linear 
unmixing model for the NMSA, we selected three types of 
endmembers: vegetation, low elbedo, high elbedo by 
composing a scatter plot using the first two MNF components. 
Each type of endmembers was normalized by the average value 
of that type. Finally, we used the constrained mixture spectral 
analysis to process the pixel values of the masked image with 
the endmembers’ spectra. 
 
 

 
 

Figure 3. Scatter plot of the first two MNF components for 
endmember identification 

 
 
The linear spectral unmixing model treats the spectral value of 
an image pixel as a linear combination of certain types of 
endmembers (equation (7)). 
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where  Rb = reflectance in band b 
 fi = fraction of endmember i in band b 
               Ri,b = reflectance of endmember i in band b 
               eb = error in band b 
               N = total number of endmembers 
               M = total number of bands 
 

603



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008 

2.5.4 Endmember Fractions:  By resolving the linear 
mixture spectral model (equation (7)) using the least error 
method, we separated the pixel values of the masked ETM+ 
image into fractions for the three endmembers (Figure 4). As an 
urban feature with a wide range of spectral properties, 
impervious surfaces can possess both high and low elbedo 
values. Therefore, a linear mixture of low elbedo and high 
elbedo is usually regarded as a good representation of 
imperviousness (equation (9)), and the fraction of impervious 
surface for each pixel can be seen as the sum of fractions of 
high elbedo and low elbedo (Wu & Murray, 2003). 
 
 

bbhighhighblowlowbimp eRfRfR ++= ,,,            (9) 

 
 
where  Rimp,b, Rlow, b, Rhigh, b = reflectance of impervious 

surfaces, low elbedo and high elbedo for band b 
 flow, fhigh = fraction of  low elbedo and high elbedo 
                eb = error for band b 
 
 

  
Low elbedo fraction                   Vegetation fraction 

  
Low elbedo fraction                            RMS 

 
Figure 4.  Unmixing results 

 
 
2.5.5 Accuracy assessment:  The mean RMS over the 
image in unmixing result was 0.0087 with 96.25% of the pixels 
having the error below 0.02. The airborne images were used to 
validate the results. To accommodate the possible effect of 
spatial registration errors, we sampled 5 × 5 pixels in ETM+ 
images for the image-to-image comparison. A total of 100 
samples were randomly selected from the entire study area in 
ETM+ imagery for statistical analysis. We then carefully 
digitalized from the high spatial resolution scanned aerial 
photos to obtain impervious surfaces for validation. The 
assessment results indicated that the spectral unmixing 
experiment on the ETM+ data for Shanghai were favourable, as 
the overall estimation RMS was 10.57% for all samples.  
 
 

3. RESULTS AND DISCUSSION 

3.1 LST patterns and statistics 

In this study the LST of was derived from the ETM+ thermal 
band. It depicted the spatial variability of land surface 
temperature of Shanghai, ranging from 297.8K in the 
surrounding districts to 333.0K in the central area and with a 
mean temperature of 309.5K and a standard deviation of 2.327. 
The hot spots clustered in high-density residential areas, 
Hongqiao Airport, and heavy industrial districts near Yangtze 
River, while the cold spots were mainly associated with lands 
adjacent to rivers, parks, and farmlands. 
 
Figure 5 shows a map of the LST with five classes based on the 
natural break classification method. By visually inspecting the 
map, we observed that SUHI in Shanghai followed a north-
south spatial pattern along Huangpu River, and also presented 
an emitting shape in a descending order from the CBD to 
suburbs and then rural areas. Another interesting observation 
was that the hot pixels located north of Suzhou River were 
much more in number than those on the south. Extensive parks 
and green spaces in the urban area south of Suzhou River 
seemed to contribute to lower land surface temperature there.   
 
 

 
 

Figure 5. Spatial distribution of LST 
 
 
3.2 Percent impervious surfaces areas 

Percent impervious surface areas (%ISA) were mapped out by 
the spectral unmixing analysis model as having a rather high 
fraction (> 50%) in most pixels (75.4% of the total) after water 
surfaces were masked out. This left out only 24.6 percent of the 
study area being covered by vegetation. 

 
 Compared to the LST pattern, the spatial distribution of %ISA 
in Shanghai appeared more complex (or inhomogeneous), but 
the tendency of concentration close to the central part of the 
city is still apparent. Unlike the LST, which was influenced by 
the combination of human activities and natural processes, 
impervious surfaces were almost totally built by humans. Thus 
they had a more complex composition and a finer spatial scale. 
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Figure 6. Spatial distribution of %ISA 
 
 
3.3 Statistical test of the %ISA-SUHI relationship 

Despite the large visual contrast between LST and %ISA 
derived for this study, it was of our interest to test the 
relationship between SUHI (represented by the LST in this 
study) and %ISA for the case of Shanghai. For a long time, 
NDVI has been used as a classic indicator of SUHI, and it 
would also be interesting to make a comparison here. 
 
3.3.1 Relationship of LST and %ISA:  Assuming a linear 
relationship between %ISA and LST, we established a 
regression model using the sampled data for model estimation 
and arrived at the following equation. 
 
 

XY ×+= 94.23772.112                                (10) 
 
 
where  Y = land surface temperature 
 X = percent of impervious surfaces area 
 
The R2 value of the regression was 0.6129, and the F-statistic 
equals 3.1496×106, resulting in p = 0.000, at the confidence 
level of 0.05.  Therefore, the result of such relationship was 
proven statistically significant. The scatter plot of the two 
variables (Figure 7(a)) seemed to show some relational pattern, 
but the points located in the lower right part were not 
explainable by the model and need further investigation. 
 
 

  
                          (a)                                             (b) 

 
Figure 7. Scatter plots of LST and %ISA (a), NDVI (b) 

 

3.3.2 Relationship of LST and NDVI:  The same regression 
analysis was applied to the LST and NDVI datasets for the 
purpose of seeking relationships. The resulting model is  
 
 

XY ×+= 55.18911.234                               (11) 
 
 
where  Y = land surface temperature 
 X = NDVI 
 
For this regression, the R2 value was 0.1837, showing virtually 
no relationship at all. The model as well as the scatter plot 
(Figure 7(b)) showed a positive correlation between LST and 
NDVI, which is opposite to the common sense. Compared to 
%ISA, therefore, NDVI might not be a good predictor for SUHI 
in Shanghai with the particular remote sensing image used in 
this study. 
 
 

4. CONCLUSIONS 

In this study, LST derived from the ETM+ spectral data proved 
to be a good surrogate for SUHI. Image-induced LST can 
evaluate urban surface temperature not only in quantity but also 
in spatial patterns. But land surface temperature cannot replace 
atmosphere temperature, they each has its own meteorological 
functions. For this reason the urban heat island identified from 
remote sensing imagery can only be called SUHI. Further 
investigation is necessary to identify LST’s linkages to 
atmospheric UHIs (i.e. CLHI and BLHI).  
 
As evident in our study, mapping impervious surfaces from 
medium-resolution remote sensing images still faces several 
technical challenges. Due to the high sensitivity of the model 
results to the quality of endmembers, the derivation of %ISA 
requires careful and more studies to improve the selection of 
endmembers. On the other hand, while the use of NDWI in this 
study area proved that this index is a convenient method for 
masking water features, we also noticed its inability to separate 
building shadows from water bodies. This may greatly degrade 
the accuracy of %ISA estimation and thus require further 
research for improvement. 
 
The strong relationship between LST and %ISA revealed in this 
study suggested that it was exactly %ISA that contributes a 
very large share to the urban heat island problem in Shanghai. 
The modelling efforts of this study may eventually lead to a 
formal testing and relevant model building for Shanghai’s SUHI 
monitoring. This experiment also demonstrated the great 
potential of using Landsat ETM+ multispectral data in the 
spatiotemporal monitoring of SUHI development. With a 16-
day revisiting temporal resolution and a 30/60-m spatial 
resolution, the Landsat ETM+ imagery surely provides a handy 
as well as cost-effective way to investigate the SUHI issues. 
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