Planning Informed by Epidemiological Simulation: The Geography of Avian Flu in Nigeria

Jeanne Fair, Ph.D. Biosecurity & Public Health Group (B-7) Los Alamos National Laboratory

UNCLASSIFIED

Slide 1

Geospatial Epidemiology Modeling of Zoonotic Diseases

- Identify current and emerging zoonotic agents
- Identify wildlife reservoirs for human and agricultural animal infection

UNCLASSIFIED

- Assess the importance of different modes of transmission
 - Waterborne
 - Foodborne
- Predict outbreaks
- Evaluate control strategies
- Effective biosurveillance planning

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 2

Multiple Hosts Model

Combines the advantages of SEIR-like models:

- exponential epidemic rise, saturation, and fall in wellmixed compartments
- rapid to compute
- easy to match to empirical data

with the advantages of agent-based models at larger scales:

- flexible and explicit rule-based mitigations
- realism (transferability)
- multi-host, with arbitrary transmissibility and susceptibility matrices between hosts
- Geography for surveillance

UNCLASSIFIED

Extending our multi-species epidemiological simulation tool

Case Study: Nigeria H5N1 avian influenza outbreak, 2006 Start with avian influenza model from U.S. studies Update with information from Nigeria Model viral spread and evaluate effect on operations

Multi-Scale Simulation of Zoonotic Epidemics - MuSE

- Severity of epidemic depends on reaching dense areas in the Midwest
- Control Methods
 - Faster response time in implementing movement restriction
 - Better surveillance in certain counties
 - Faster culling and quarantine response
 Vaccination

Manore C., B. H. McMahon, J.M. Fair*, J. M. Hyman, M. Brown, and M. LaBute. 2011. Disease Properties, Geography, and Mitigation Strategies in a Simulation Spread of Rinderpest Across the United States. *Veterinary Research*. 42:55-64

UNCLASSIFIED

Slide 5

Input parameters

Model parameters for animal disease model.

- Transmission rate
- Infected animals that progress to symptoms
- Infected animals that die
- Infected animals that are culled
- Vaccination policy
- Culling rate
- Disease stage time
- Recovery time
- Inter-state movement control efficacy
- Quarantine policy
- Susceptibility

Validation and parameterization critical for both animal and human epidemiology model. Case studies are integral to both model development and validation.

UNCLASSIFIED

Similar to human disease model parameters

- **Cattle and Sheep Diseases**
 - Foot-and-Mouth Disease
- Rinderpest
- Completed Diseases **Rift-Valley Fever**
 - **Brucellosis**
 - Tularemia
 - Nipah Virus
 - **Classical Swine Fever**
 - **Poultry Diseases**
 - Highly Pathogenic Avian Influenza
 - Newcastle Disease Virus

Slide 6

Nigeria – Biogeography of an outbreak

Needed Inputs for Multi-host Epidemiology Model

Ducks (FAO)

-People (UN, ESRI)

Wild Birds (FAO)

In addition to distribution of ho

In addition to distribution of hosts, we need:

- Transmission vectors
- Susceptibility vectors
- Approximate long range
 transmission parameters
- Control measures and mitigative efficacies

UNCLASSIFIED

Slide 9

Multihost epidemiological model

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

10

Regions of Nigeria

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

0

Slide 11

Experimental Design Results

Simulation Results

Optimizing for Biosurveillance

UNCLASSIFIED

Slide 14

Building a Biosurveillance Architecture

 Overall epidemic consequence vs.
 location of start of epidemic (red indicates higher consequence).

 Markers indicate current surveillance points operated by the Nigerian government.

Gaps and Needs

- Incentives for reporting animal infections due to extensive and uncertain economic consequences
- Rapid, real-time genotyping
- High throughput laboratory capabilities
- Making the connection to the facts on the ground more literal and exact
- Spatial-temporal metadata = smart data
- Completion of spatial-temporal analysis

UNCLASSIFIED

NS

Acknowledgments

This work was funded and supported by CBT-09-IST-05-1-0092 from the Joint Science and Technology Office for Chemical and Biological Defense (JSTO-CBD), and the Defense Threat Reduction Agency's (DTRA). LA-UR 10-03218

Mac Brown, Leslie Moore, Dennis Powell, Benjamin McMahon, Montiago LaBute, James Hyman, Ariel Rivas, Mary Greene, Mark Jankowski, Joel Berendzen, and Jason Loeppky.

UNCLASSIFIED

Slide 17

