

Santa Fe, 12-13-Sep 2011 – Advances in Geospatial Technologies for Health



#### New Technologies for emerging diseases

#### Andreas N. Skouloudis & David Rickerby

#### andreas.skouloudis@jrc.ec.europa.eu Joint Research Centre (JRC)

The European Commission's Research-Based Organisation

#### **JRC's Vision:**

"...to be a trusted provider of sciencebased policy options to EU policy makers to address key challenges facing our society, underpinned by internationallyrecognised research"







- Aim to fulfil a set of strategic and organisational goals:
- Develop a range of policy options
- •Set out and provide analyses of science-based policy options
- •Make robust scientific contributions to solving EU and global 'grand challenges'
- Provide more integrated scientific and technical support to our customers
- •Strengthen anticipation/forward-looking capacities
- 1. <u>Towards an open and competitive economy</u> by contributing to the goals of EU2020 Strategy
- 2. Development of a low carbon society
- 3. <u>Sustainable management of natural resources</u>
- 4. <u>Safety of food and consumer products</u> (e.g. containing chemicals and nanomaterials)
- 5. Nuclear safety and security
- 6. <u>Security and crisis management</u> by contributing to the development of new technological approaches
- 7. Reference materials and measurements.





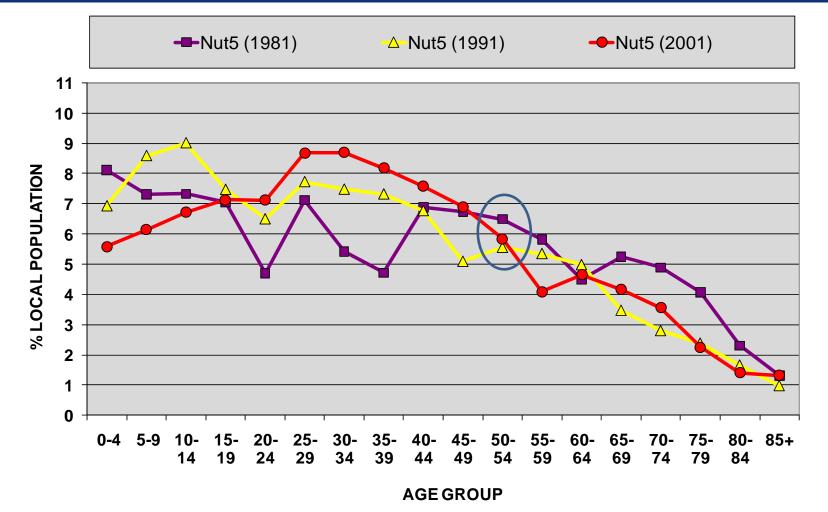
- Earth observations for heath are usually treated as an input variable to models?
- Model output on health is used as risk reported on maps?
- There is a need to separate chronic or acute health effects.
- We have usually a weak Environmental burden of disease examined and the causes of outbreaks is usually not properly described.
- We also do not know what are the consequences of preventive measures and hope of an early detection.
- We need to consider how technology can help for health impact assessments.



#### Change of land-use and biodiversity ...






Areas of intensive agriculture have consequences on local demography.



#### **Chronic Health Effects**



Santa Fe, 12-13-Sep 2011 – Advances in Geospatial Technologies for Health



Reducing local population older than 55 years.

Irrespective of the significant influx of population between 24-54 years old.

Similar trends in all regions with changes of land-use.



Santa Fe, 12-13-Sep 2011 – Advances in Geospatial Technologies for Health



Earth observations "Not as predictive tools", ... but as regulatory compliance/verification process.



### The 2D Indexing (Toxicity vs health dimension)



#### Santa Fe, 12-13-Sep 2011 – Advances in Geospatial Technologies for Health

| E1. Background concentration and local dispersion effects |
|-----------------------------------------------------------|
| E2. Local historical mean conditions                      |
| E3. Environmental limits affecting local biodiversity     |
| E4. Conditions and alerts for local abatement strategies  |
| E5. Targets for local annual mean concentrations          |
| E6. Targets for regional/national concentrations          |
| E7. Lower limits for acute health effects                 |
| E8. Upper limits for human health effects                 |
| E9. Permanent irreversible environmental damage           |

| H1. Restrained minor health effects           |  |  |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|--|--|
| H2. Impaired function of organs               |  |  |  |  |  |  |  |
| H3. Appearance of health symptoms             |  |  |  |  |  |  |  |
| H4. Utilisation of medicines                  |  |  |  |  |  |  |  |
| H5. Reduced performance / restricted activity |  |  |  |  |  |  |  |
| H6. Visit to local General Practitioners      |  |  |  |  |  |  |  |
| H7. Emergency room visits                     |  |  |  |  |  |  |  |
| H8. Hospital admissions                       |  |  |  |  |  |  |  |
| H9. Premature mortality                       |  |  |  |  |  |  |  |

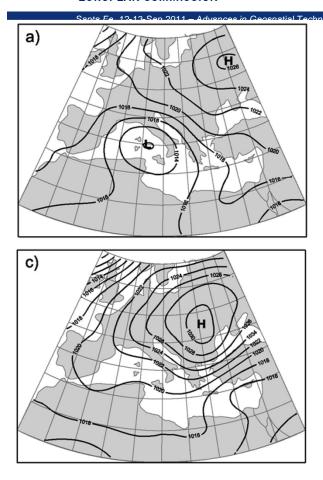
 How big is the area of the environmental causes influencing the health effect?

2. What is the percentage of the local population effected?

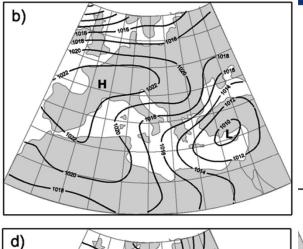


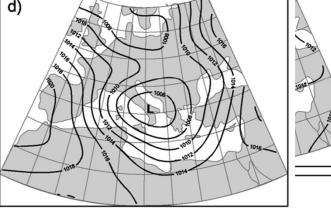


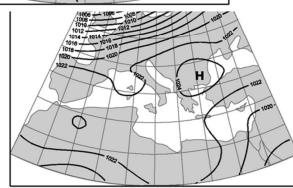


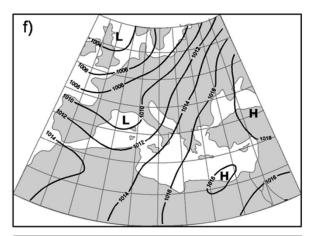

# 3. How frequently health consequences are happening due to adverse environmental condition.

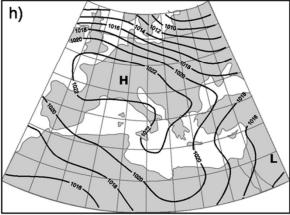
|            | Cases | SR<br>(MJ m <sup>-2</sup> ) | T <sub>mean</sub><br>(°C) | T <sub>max</sub><br>(°C) | T <sub>min</sub><br>(°C) | T <sub>range</sub><br>(°C) | RH<br>(%) | P<br>(mm Hg) | WS<br>(m s <sup>-1</sup> ) | v'<br>(m s <sup>-1</sup> ) | u'<br>(m s <sup>-1</sup> ) | e<br>(mm Hg) |
|------------|-------|-----------------------------|---------------------------|--------------------------|--------------------------|----------------------------|-----------|--------------|----------------------------|----------------------------|----------------------------|--------------|
| Cluster 1W | 1090  | 6.7                         | 12.2                      | 15.3                     | 9.7                      | 5.6                        | 79        | 753.3        | 2.0                        | -0.3                       | -0.4                       | 11.5         |
| Cluster 2W | 933   | 8.1                         | 7.5                       | 10.4                     | 5.3                      | 5.1                        | 69        | 751.2        | 3.3                        | -2.4                       | 0.7                        | 7.4          |
| Cluster 3W | 719   | 8.7                         | 10.2                      | 12.6                     | 8.4                      | 4.2                        | 66        | 757.4        | 6.2                        | -5.8                       | -0.9                       | 8.6          |
| Cluster 4W | 1024  | 7.6                         | 12.9                      | 15.9                     | 10.2                     | 5.7                        | 75        | 745.7        | 3.4                        | 2.0                        | -0.1                       | 11.4         |
| Cluster 5W | 1048  | 17.1                        | 14.1                      | 18.7                     | 10.4                     | 8.3                        | 62        | 749.6        | 2.3                        | 0.8                        | 0.6                        | 10.3         |
| Cluster 6W | 1192  | 10.2                        | 16.1                      | 20.2                     | 13.0                     | 7.2                        | 76        | 753.1        | 1.6                        | 0.7                        | -0.2                       | 14.2         |
| Cluster 7W | 1140  | 8.9                         | 10.0                      | 14.1                     | 6.8                      | 7.3                        | 71        | 758.1        | 1.6                        | -0.6                       | 0.0                        | 9.0          |
| Cluster 8W | 944   | 13.7                        | 12.5                      | 17.5                     | 8.7                      | 8.8                        | 62        | 756.5        | 1.8                        | -0.5                       | 0.2                        | 9.3          |

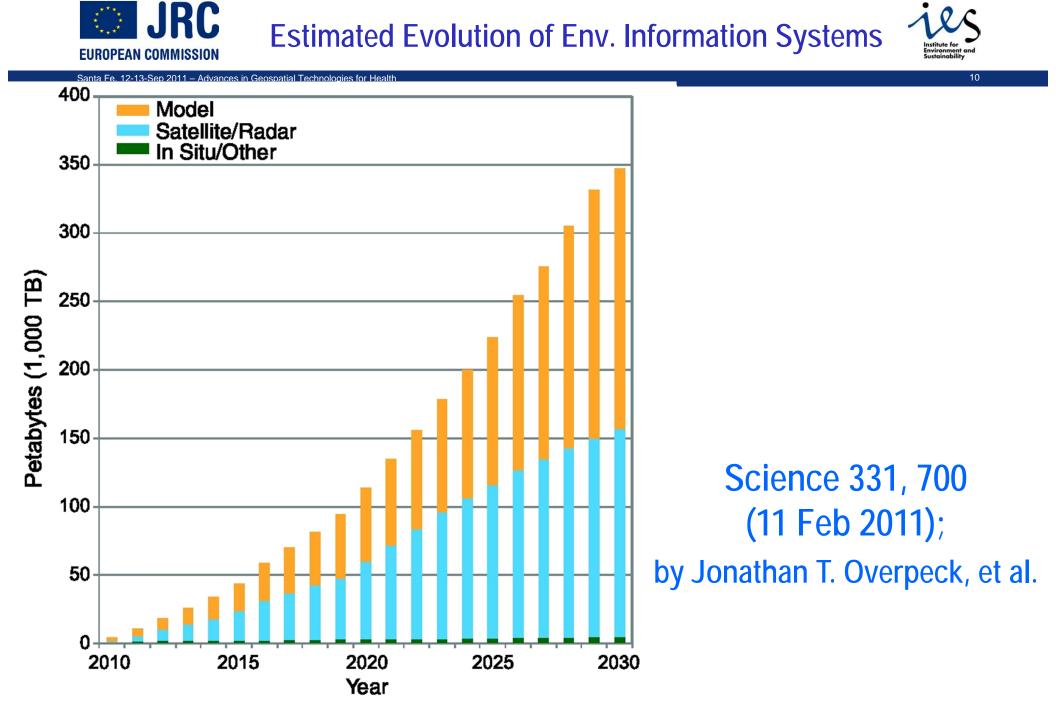

Kassomenos et. al: Seasonal variatons of the circulation types ..., Climate Research, Vol.24 (2003) pp 33-46


## **EUROPEAN COMMISSION** Dispersion classification example (cold)





Clusters of dispersion patterns based on meteo-sat images.



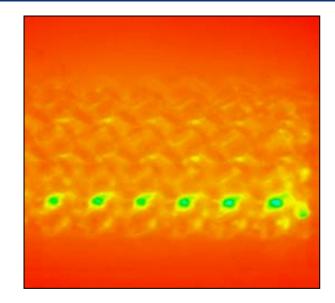













Santa Fe, 12-13-Sep 2011 - Advances in Geospatial Technologies for Health

**Existing** Pathogen Concentrating Device Automatically samples water or liquids for detection on the biosensor chip.





Bacteria captured on nm posts in an experimental Labon-a-chip (a 10 year approach)

Network of devices for real time warning and measurements

# **EUROPEAN COMMISSION** Fixed & Mobile devices for real-time AQ





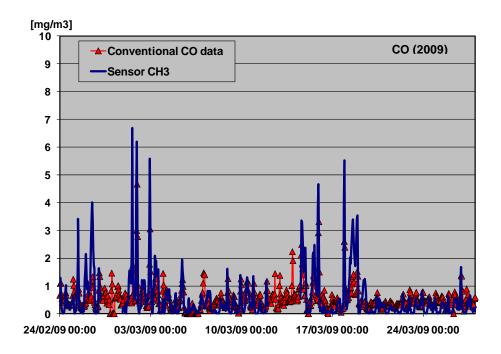
**UROPEAN COMMISSION** What is possible with this approach?

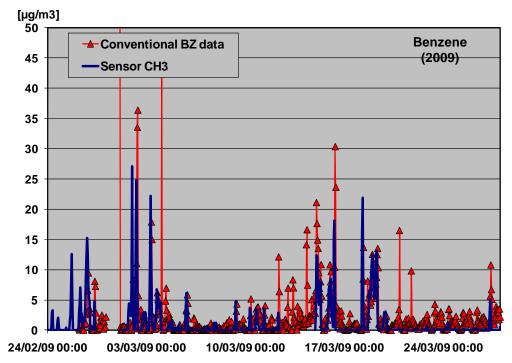


Santa Fe, 12-13-Sep 2011 – Advances in Geospatial Technologies for Health

...the re-analyis of existing data sources can serve as a starting basis from where new health impact assessments can be carried out.

...with quantifiable parameters and harmonised satellite monitoring, identify dangers for specific population groups (intensive agri exposure).


...promote real-time monitoring and interventions coupled with a in-situ sensors (the use of which are rapidly propagating with current telematic networks).


### AQ concentrations per 5 sec

EUROPEAN COMMISSION











Santa Fe, 12-13-Sep 2011 - Advances in Geospatial Technologies for Health



- An ENVISOR methodology is established utilizing directly earth observations, for diagnosing health effects.
- But for acute health effects <u>in-situ</u> tools are introduced for diagnostic purposes and for the "assessment of regulatory effects".
- By linking EO and in-situ sensors we can establish innovative reporting tools for characterizing different types of population exposure without excluding the randomness of population activities.
- Technology can be used for changing the perceptions about vulnerable population groups, the severity of specific locations (hot spots) and the significance of acute and chronic exposure to environmental stressors that have impact on human health.