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Dengue
Endemic in more than 110 countries

Tropical, subtropical, urban, peri-urban areas
Annually infects 50 – 100 million people worldwide
12,500 – 25,000 deaths annually
Symptoms: fever, headache, muscle and joint pains, and 
characteristic skin rash (similar to measles)
Primarily transmitted by Aedes mosquitoes 

Live between 35°N - 35°S latitude,  >1000m elevation
Four serotypes exist

Infection from one serotype may give lifelong immunity to that 
serotype, but only short-term to others
Secondary infection increases the severity risk



Dengue Geographic Spread

Image source: WHO – Global Alert and Response – Impact of Dengue

Red: Epidemic Dengue, Blue: Aedes Aegypti. 
Source: CDC



Dengue In Indonesia

First reported in 1968 in 2 provinces
10,000 – 25,000 inter-epidemic background cases annually 
Secondary infection is significant
Dengue peak typically coincides with rainy season

Population growth and 
unplanned urbanization may 
contribute to the increase in 
dengue cases
Cost Indonesia ~$363 million 
annually 

~$40 million in medical expenses 
Data source: Indonesia Ministry of  Health 



Dengue In Indonesia
ARIMA Analysis

Auto-Regressive Integrated Moving Average
Class of time series regression technique
Developed by Box-Jenkins (1970)

Data characterized by strong auto-correlation
Violates Ordinary Linear Regression Assumption

Accounts seasonality
Assume stationary series

Constant mean and variance across time
Differencing: Regular  z(t) = y(t) – y(t-1), Seasonal z(t) = y(t) – y(t-s), 
where s is seasonality period 
Transformation: logarithmic, square root



Dengue in Indonesia
ARIMA Analysis

General formulation: ARIMA(p,d,q)
p: autoregressive order
d: differencing order
q: moving average order (lagged error)

Let
Yt = response variable (dependent variable)
Zt = Zt – Zt-1 – … – Zt-d

Then

Multivariate ARIMA
Covariate lag order determined through cross-correlation function



Dengue in Indonesia
ARIMA Analysis

Environmental variables used



Dengue in Indonesia
ARIMA Analysis

Best model output

Environmental variable 
included as input: TRMM and 
Dew Point

Peak timing can be modeled 
accurately up to year 2004

Vector control effort by the 
local government started in 
early 2005



Malaria
300 – 500 million cases per year worldwide
1-3 million deaths per year

~ 1 death every 30 seconds
40% of the world’s populations at risk

35 countries contribute to 98% of global malaria deaths
30 in sub-Saharan Africa, 5 in Asia

Highest risks
Children, pregnant women,  anyone with depressed 
immunoresponse

ACT is becoming less sensitive
Climate change may cause outbreaks in previously 
unaffected regions



Malaria in Korea
Malaria caused by P.vivax

Eradicated from Korea ~30 yrs ago
Re-emerge in North and South Korea in 1993

Study area
US Army’s Camp Greaves in South Korea (N. Kyunggi Province)
43 sample sites, predominant habitats:

Rice fields (26 sites) and ditches (13 sites)

Predominant species: Anopheles Sinensis

Study objective
Identify potential Anopheles Sinensis larval habitat (irrigation and 
drainage ditches) so as to aid vector control effort



Malaria in Korea 
Larval Habitat Identification

Classification using pan-sharpened 1-m resolution 
IKONOS data on a 3.2 x 3.2 km test site



Malaria in Korea
Larval Habitat Identification

Classification accuracy



Malaria in Thailand
Leading cause of morbidity and mortality in Thailand
~50% of population live in malarious area
Most endemic provinces are bordering Myanmar & Cambodia

Significant immigrant population
Mae La Camp

Largest refugee camp
>30,000 population



Objective: to predict malaria cases in endemic provinces using environmental 
parameters

Neural Network
Artificial-intelligence method that mimic the functioning of brain

Network was trained using backpropagation

Malaria in Thailand
Neural Network Analysis
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Malaria in Thailand
Neural Network Analysis

Satellite-observed meteorological & Environmental Parameters 
for 4 Thailand seasons

MODIS Measurements
Surface Temperature

AVHRR & MODIS Measurements
Vegetation Index

TRMM Measurements
Rainfall



Malaria in Thailand
Neural Network Analysis

Training and validation accuracy
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Malaria in Thailand
Neural Network Analysis

Actual Malaria 
Incidence

Hindcast Incidence



Malaria in Thailand
Agent-Based Simulation

Kong Mo Tha (KMT) village, Kanchanaburi

In Collaboration with AFRIMS and WRAIR

Malaria surveillance study (1999 – 2004)
Blood films from ~450 people per month

Larval and adult mosquito collection

A. dirus
A. minimus, A. maculatus

A. barbirostris, A. campestris

A. sawadwongpori,  A. maculatus



Malaria in Thailand
Agent-Based Simulation

A small hamlet example

1/7 of KMT

23 houses
2 cattle sheds
24 clusters of larval habitats

69 adults
23 children
8 cows



A. minimus Pf
A. minimus Pv

Pf + Pv

Malaria in Thailand
Agent-Based Simulation

Prevalence Sporozoite Rate

Entomological Inoculation Rate 
(# infective bites/person/day)

Scenario analysis



Malaria in Indonesia
40% of Indonesian population live 
in malaria area

~ 500 reported deaths each year

Most cases are outside of the 
main island

Source: WHO SEARO

Major malaria species 
distribution in Indonesia



Malaria in Indonesia
Neural Network Analysis

Rainfall pattern – which drives malaria transmission –
varies considerably between provinces

Precipitation 
from TRMM



Malaria in Indonesia
Neural Network Analysis

Central Java Province

Aceh Province



Biological Compartmental Model 
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Biological Compartmental Model
Toy model: 3-site, 24 ODEs

For each site, k (k=1,2,3), mosquito density can be described as:
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Where f(L) is a sinusoidal function representing temperature and rainfall variability 

Human/resident density can be described as:
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Biological Compartmental Model
Preliminary result
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